32 research outputs found

    Procedural Creation of Medical Reports with Hierarchical Information Processing in Radiation Oncology

    Get PDF
    Background: For many years, the oncological doctor's letter has been the pivotal means of information transfer to general practitioners, medical specialists or medical consultants. Yet, both creator and recipient require a high level of abstraction, retentiveness and analysis due to the large number of diagnoses and therapies. In contrast to the commonly used structure of doctor's letters, where all diagnoses and therapies are listed in sequential order with all diagnoses first, it is by no means trivial to establish the important chronological and hierarchical context in the description of oncological cases. Additional aspects of importance are the integration of these letters into existing clinical and departmental information systems (for example via HL7 interface), various export formats (for example PDF, HTML), fax and encrypted email. Moreover these letters need a modern layout that, among others, meets the requirements of corporate design. Methods: The requirements for a doctor's letter system are manifold and can only be represented rudimentarily via a normal word processing system. Due to this deficiency we developed a system that covers all special features and requirements for clinical use. The system is based on a scalable and extensible client-server architecture. We use the programming languages Harbour, C++, PHP and JavaScript, Microsoft SQL database for data storage and the HL7 standard as the interface to other information systems such as hospital information system (HIS). Export formats are PDF, HTML/XML. Layouts are generated with TeX, LaTeX and MikTeX. Results: The aforementioned requirements were resolved with the doctor's letter and finding system IntDok. The hierarchical presentation of diagnoses, histologies and therapies provides the recipient with a first outline of the course of the disease. A strict procedure controls the whole process of document compilation and assists the user with many highly regarded tools such as text blocks, import and export (PDF and HTML/XML including barcodes) functions or HL7 interface to other information systems. The software also provides a sophisticated mail merging. All content from previous letters can easily be inserted into the current document. A TeX-server automatically provides document layout including supreme hyphenation so that uniform and perfect appearance (corporate design) is guaranteed. The documents are saved in a MS-SQL database (almost 230,000 documents since 1991), independent of any proprietary formats such as MS-Word. Conclusion: Creation of documents is fast, simple and well-structured. Sophisticated tools guarantee the optimal use of human resources and time. The system is an important module in our overall digital work environment

    Multimodal Document Management in Radiotherapy, an Update

    Get PDF
    Background: In 2013, we presented a study entitled “Multimodal document management in radiotherapy”, demonstrating the excellent routine performance of the system about four years after its initiation by evaluating a sample of n=500 documents. During this time the system saw additional developments and significant improvements: the most important innovative step being the automatic document processing. This has been completely reworked, to minimize staff-machine interaction, to increase processing speed and to further simplify the overall document handling. This improved system has been running practically without any problems for several months. Methods: While reworking the automatic document processing, we have developed algorithms that allow us to transfer documents with varying type, within a single scanning procedure, into our departmental system. The system identifies and corrects for any arbitrary order or rotation of scanned pages. Finally, after the transfer into the departmental system, all documents are in the correct order and they are automatically linked to the respective patient record.  Results: According to our surveys, the error rate of the system, as in the previous version, is 0%. Compared to manual scanning and mapping of documents, we can quantify a 30-fold increase in the processing speed. In spite of these additional and elaborate processes, code optimizations yielded a processing speed increase of 20%. Pre-sorting of the documents (e.g., medical reports, or documents of informed consents) can be completely dispensed with the automated correction for jumbled documents or document rotations. In this manner 25,000 documents are automatically processed each year in the Department of Radiation Oncology at the University of Freiburg. Conclusion: With the methods presented in this study, and some additional bug fixes, and small improvements, automatic document processing of our departmental system was significantly improved without compromising the error rate. Keywords: Clinic management, documents, workflow, optimisation, efficiency, automation, Mosaiq, oncology informatics &nbsp

    Comparison of intraoperative radiotherapy as a boost vs. simultaneously integrated boosts after breast-conserving therapy for breast cancer

    Get PDF
    BackgroundCurrently, there are no data from randomized trials on the use of intraoperative radiotherapy (IORT) as a tumor bed boost in women at high risk of local recurrence. The aim of this retrospective analysis was to compare the toxicity and oncological outcome of IORT or simultaneous integrated boost (SIB) with conventional external beam radiotherapy (WBI) after breast conserving surgery (BCS).MethodsBetween 2009 and 2019, patients were treated with a single dose of 20 Gy IORT with 50 kV photons, followed by WBI 50 Gy in 25 or 40.05 in 15 fractions or WBI 50 Gy with SIB up to 58.80–61.60 Gy in 25–28 fractions. Toxicity was compared after propensity score matching. Overall survival (OS) and progression-free survival (PFS) were calculated using the Kaplan–Meier method.ResultsA 1:1 propensity-score matching resulted in an IORT + WBI and SIB + WBI cohort of 60 patients, respectively. The median follow-up for IORT + WBI was 43.5 vs. 32 months in the SIB + WBI cohort. Most women had a pT1c tumor: IORT group 33 (55%) vs. 31 (51.7%) SIB group (p = 0.972). The luminal-B immunophenotype was most frequently diagnosed in the IORT group 43 (71.6%) vs. 35 (58.3%) in the SIB group (p = 0.283). The most reported acute adverse event in both groups was radiodermatitis. In the IORT cohort, radiodermatitis was grade 1: 23 (38.3%), grade 2: 26 (43.3%), and grade 3: 6 (10%) vs. SIB cohort grade 1: 3 (5.1%), grade 2: 21 (35%), and grade 3: 7 (11.6%) without a meaningful difference (p = 0.309). Fatigue occurred more frequently in the IORT group (grade 1: 21.7% vs. 6.7%; p = 0.041). In addition, intramammary lymphedema grade 1 occurred significantly more often in the IORT group (11.7% vs. 1.7%; p = 0.026). Both groups showed comparable late toxicity. The 3- and 5-year local control (LC) rates were each 98% in the SIB group vs. 98% and 93% in the IORT group (LS: log rank p = 0.717).ConclusionTumor bed boost using IORT and SIB techniques after BCS shows excellent local control and comparable late toxicity, while IORT application exhibits a moderate increase in acute toxicity. These data should be validated by the expected publication of the prospective randomized TARGIT-B study

    An inclusive Research and Education Community (iREC) model to facilitate undergraduate science education reform

    Get PDF
    Funding: This work was supported by Howard Hughes Medical Institute grants to DIH is GT12052 and MJG is GT15338.Over the last two decades, there have been numerous initiatives to improve undergraduate student outcomes in STEM. One model for scalable reform is the inclusive Research Education Community (iREC). In an iREC, STEM faculty from colleges and universities across the nation are supported to adopt and sustainably implement course-based research – a form of science pedagogy that enhances student learning and persistence in science. In this study, we used pathway modeling to develop a qualitative description that explicates the HHMI Science Education Alliance (SEA) iREC as a model for facilitating the successful adoption and continued advancement of new curricular content and pedagogy. In particular, outcomes that faculty realize through their participation in the SEA iREC were identified, organized by time, and functionally linked. The resulting pathway model was then revised and refined based on several rounds of feedback from over 100 faculty members in the SEA iREC who participated in the study. Our results show that in an iREC, STEM faculty organized as a long-standing community of practice leverage one another, outside expertise, and data to adopt, implement, and iteratively advance their pedagogy. The opportunity to collaborate in this manner and, additionally, to be recognized for pedagogical contributions sustainably engages STEM faculty in the advancement of their pedagogy. Here, we present a detailed pathway model of SEA that, together with underpinning features of an iREC identified in this study, offers a framework to facilitate transformations in undergraduate science education.Peer reviewe

    Instructional Models for Course-Based Research Experience (CRE) Teaching

    Get PDF
    The course-based research experience (CRE) with its documented educational benefits is increasingly being implemented in science, technology, engineering, and mathematics education. This article reports on a study that was done over a period of 3 years to explicate the instructional processes involved in teaching an undergraduate CRE. One hundred and two instructors from the established and large multi-institutional SEA-PHAGES program were surveyed for their understanding of the aims and practices of CRE teaching. This was followed by large-scale feedback sessions with the cohort of instructors at the annual SEA Faculty Meeting and subsequently with a small focus group of expert CRE instructors. Using a qualitative content analysis approach, the survey data were analyzed for the aims of inquiry instruction and pedagogical practices used to achieve these goals. The results characterize CRE inquiry teaching as involving three instructional models: 1) being a scientist and generating data; 2) teaching procedural knowledge; and 3) fostering project ownership. Each of these models is explicated and visualized in terms of the specific pedagogical practices and their relationships. The models present a complex picture of the ways in which CRE instruction is conducted on a daily basis and can inform instructors and institutions new to CRE teaching

    Models of classroom assessment for course-based research experiences

    Get PDF
    Course-based research pedagogy involves positioning students as contributors to authentic research projects as part of an engaging educational experience that promotes their learning and persistence in science. To develop a model for assessing and grading students engaged in this type of learning experience, the assessment aims and practices of a community of experienced course-based research instructors were collected and analyzed. This approach defines four aims of course-based research assessment—(1) Assessing Laboratory Work and Scientific Thinking; (2) Evaluating Mastery of Concepts, Quantitative Thinking and Skills; (3) Appraising Forms of Scientific Communication; and (4) Metacognition of Learning—along with a set of practices for each aim. These aims and practices of assessment were then integrated with previously developed models of course-based research instruction to reveal an assessment program in which instructors provide extensive feedback to support productive student engagement in research while grading those aspects of research that are necessary for the student to succeed. Assessment conducted in this way delicately balances the need to facilitate students’ ongoing research with the requirement of a final grade without undercutting the important aims of a CRE education

    Towards automated on-line adaptation of 2-Step IMRT plans: QUASIMODO phantom and prostate cancer cases

    Get PDF
    Background The standard clinical protocol of image-guided IMRT for prostate carcinoma introduces isocenter relocation to restore the conformity of the multi-leaf collimator (MLC) segments to the target as seen in the cone-beam CT on the day of treatment. The large interfractional deformations of the clinical target volume (CTV) still require introduction of safety margins which leads to undesirably high rectum toxicity. Here we present further results from the 2-Step IMRT method which generates adaptable prostate IMRT plans using Beam Eye View (BEV) and 3D information. Methods Intermediate/high-risk prostate carcinoma cases are treated using Simultaneous Integrated Boost at the Universitätsklinkum Wßrzburg (UKW). Based on the planning CT a CTV is defined as the prostate and the base of seminal vesicles. The CTV is expanded by 10 mm resulting in the PTV; the posterior margin is limited to 7 mm. The Boost is obtained by expanding the CTV by 5 mm, overlap with rectum is not allowed. Prescription doses to PTV and Boost are 60.1 and 74 Gy respectively given in 33 fractions. We analyse the geometry of the structures of interest (SOIs): PTV, Boost, and rectum, and generate 2-Step IMRT plans to deliver three fluence steps: conformal to the target SOIs (S0), sparing the rectum (S1), and narrow segments compensating the underdosage in the target SOIs due to the rectum sparing (S2). The width of S2 segments is calculated for every MLC leaf pair based on the target and rectum geometry in the corresponding CT layer to have best target coverage. The resulting segments are then fed into the DMPO optimizer of the Pinnacle treatment planning system for weight optimization and fine-tuning of the form, prior to final dose calculation using the collapsed cone algorithm. We adapt 2-Step IMRT plans to changed geometry whilst simultaneously preserving the number of initially planned Monitor Units (MU). The adaptation adds three further steps to the previous isocenter relocation: 1) 2-Step generation for the geometry of the day using the relocated isocenter, MU transfer from the planning geometry; 2) Adaptation of the widths of S2 segments to the geometry of the day; 3) Imitation of DMPO fine-tuning for the geometry of the day. Results and conclusion We have performed automated 2-Step IMRT adaptation for ten prostate adaptation cases. The adapted plans show statistically significant improvement of the target coverage and of the rectum sparing compared to those plans in which only the isocenter is relocated. The 2-Step IMRT method may become a core of the automated adaptive radiation therapy system at our department

    Fast IMRT by increasing the beam number and reducing the number of segments

    Get PDF
    Purpose The purpose of this work is to develop fast deliverable step and shoot IMRT technique. A reduction in the number of segments should theoretically be possible, whilst simultaneously maintaining plan quality, provided that the reduction is accompanied by an increased number of gantry angles. A benefit of this method is that the segment shaping could be performed during gantry motion, thereby reducing the delivery time. The aim was to find classes of such solutions whose plan quality can compete with conventional IMRT. Materials/Methods A planning study was performed. Step and shoot IMRT plans were created using direct machine parameter optimization (DMPO) as a reference. DMPO plans were compared to an IMRT variant having only one segment per angle ("2-Step Fast"). 2-Step Fast is based on a geometrical analysis of the topology of the planning target volume (PTV) and the organs at risk (OAR). A prostate/rectum case, spine metastasis/spinal cord, breast/lung and an artificial PTV/OAR combination of the ESTRO-Quasimodo phantom were used for the study. The composite objective value (COV), a quality score, and plan delivery time were compared. The delivery time for the DMPO reference plan and the 2-Step Fast IMRT technique was measured and calculated for two different linacs, a twelve year old Siemens Primus™ ("old" linac) and two Elekta Synergy™ "S" linacs ("new" linacs). Results 2-Step Fast had comparable or better quality than the reference DMPO plan. The number of segments was smaller than for the reference plan, the number of gantry angles was between 23 and 34. For the modern linac the delivery time was always smaller than that for the reference plan. The calculated (measured) values showed a mean delivery time reduction of 21% (21%) for the new linac, and of 7% (3%) for the old linac compared to the respective DMPO reference plans. For the old linac, the data handling time per beam was the limiting factor for the treatment time reduction. Conclusions 2-Step Fast plans are suited to reduce the delivery time, especially if the data handling time per beam is short. The plan quality can be retained or even increased for fewer segments provided more gantry angles are used
    corecore