31 research outputs found

    Dihydrochalcone glycosides from Oxytropis myriophylla

    Get PDF
    Chemical investigations of the 70% alcohol extract of Oxytropis myriophylla (Pall.) DC. (Leguminosae) have afforded the new natural product neohesperidin dihydrochalcone (1) and the known phloretin-4'-O-β-D-glucopyranoside (2), which was the first reported from the genus Oxytropis. This paper reports the isolation and full spectroscopic characterization of compounds 1 and 2 by NMR, UV, IR and MS data

    Absorbable Phenylpropenoyl Sucroses from Polygala tenuifolia

    No full text
    Three phenylpropenoyl sucroses – sibiricose A5 (1), A6 (2) and 3′,6-disinapoyl sucrose (3) – were isolated from the 30% EtOH extract of Polygala tenuifolia, which displayed antidepressant-like action. HPLC analysis indicated that the three phenylpropenoyl sucroses could be absorbed into serum. From the serum pharmacochemistry point of view, these three phenylpropenoyl sucroses might prevent or relieve depression

    New Flavonoid Glycosides from Elsholtzia rugulosa Hemsl.

    No full text
    Elsholtzia rugulosa Hemsl. is known in China as a local herbal tea, medicinal herb and honey plant. Chemical examination of E. rugulosa led to the isolation of two new flavonoid glycosides, apigenin 4'-O-α-D-glucopyranoside (1) and 5,7,3',4'-tetrahydroxy-5'-C-prenylflavone-7-O-β-D-glucopyranoside (2), together with nine known flavonoids. Their structures were elucidated on the basis of spectroscopic evidence

    Synthesis of Isotopically Labeled 13C3-Simazine and Development of a Simultaneous UPLC-MS/MS Method for the Analysis of Simazine in Soil

    No full text
    The isotope dilution mass spectrometry (IDMS) is a highly efficient method for tackling the ion suppression in complex matrix by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), but a lack of commercial internal standards is a limiting factor for these analyses. Herein, an economical and efficient strategy for the synthesis of 13C3-simazine via a three-step procedure was developed. The isotope-labeled internal standard was used for determination of simazine residue in soil samples. The quantitation method has a limit of detection of 0.015 μg/kg and quantitation of 0.08 μg/kg. The inter-day and intra-day precision of the method were below 4.6%. Recovery values were ranged between 92.9% and 99.2%. All the samples obtained from six provinces in China contained from 1 to 62 μg/kg of simazine

    Absorbable Phenylpropenoyl Sucroses from Polygala tenuifolia

    No full text
    Three phenylpropenoyl sucroses – sibiricose A5 (1), A6 (2) and 3′,6-disinapoyl sucrose (3) – were isolated from the 30% EtOH extract of Polygala tenuifolia, which displayed antidepressant-like action. HPLC analysis indicated that the three phenylpropenoyl sucroses could be absorbed into serum. From the serum pharmacochemistry point of view, these three phenylpropenoyl sucroses might prevent or relieve depression

    Genus Tinospora: Ethnopharmacology, Phytochemistry, and Pharmacology

    No full text
    The genus Tinospora includes 34 species, in which several herbs were used as traditional medicines by indigenous groups throughout the tropical and subtropical parts of Asia, Africa, and Australia. The extensive literature survey revealed Tinospora species to be a group of important medicinal plants used for the ethnomedical treatment of colds, headaches, pharyngitis, fever, diarrhea, oral ulcer, diabetes, digestive disorder, and rheumatoid arthritis. Indian ethnopharmacological data points to the therapeutic potential of the T. cordifolia for the treatment of diabetic conditions. While Tinospora species are confusing in individual ingredients and their mechanisms of action, the ethnopharmacological history of those plants indicated that they exhibit antidiabetic, antioxidation, antitumor, anti-inflammation, antimicrobial, antiosteoporosis, and immunostimulation activities. While the clinical applications in modern medicine are lacking convincing evidence and support, this review is aimed at summarizing the current knowledge of the traditional uses, phytochemistry, biological activities, and toxicities of the genus Tinospora to reveal its therapeutic potentials and gaps, offering opportunities for future researches
    corecore