32 research outputs found

    Predicting the catalytic sites of isopenicillin N synthase (IPNS) related non-haem iron-dependent oxygenases and oxidases (NHIDOX) through a structural superimposition and molecular docking approach

    Get PDF
    Isopenicillin N synthase (IPNS) related Non-haem iron-dependent oxygenases and oxidases (NHIDOX) demonstrated a striking structural conservativeness, even with low protein sequence homology. It is evident that these enzymes have an architecturally similar catalytic centre with active ligands lining the reactive pocket. Deacetoxycephalosporin C synthase (DAOCS), isopenicillin N synthase (IPNS), deacetylcephalosporin C synthase (DACS), clavaminate synthase 1 and 2 (CAS1 and 2) are important bacterial enzymes that catalyze the formation of β-lactam antibiotics belonging to this enzyme family. Most plant enzyme members within this subfamily namely flavonol synthase (FLS), leucoanthocyanidin dioxygenase (LDOX), anthocyanidin synthase (ANS), 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO), gibberellin 20-oxidase (G20O), desacetoxyvindoline-4-hydroxylase (D4H), flavanone 3β-hydroxylase (F3H), and hyoscyamine 6β-hydroxylase (H6H) are involved in catalyzing the biosyntheses of plant secondary metabolites. With the advancement of protein structural analysis software, it is possible to predict the catalytic sites of protein that shared a structural resemblance. By exploiting the superimposition model of DAOCS-IPNS, DAOCS-IPNS-CAS, G20O-LDOX, FLS-LDOX, ACCO-LDOX, D4H-LDOX, F3H-LDOX and H6H-LDOX model; a computational protocol for predicting the catalytic sites of proteins is now made available. This study shows that without the crystallized or nuclear magnetic resonance (NMR) structures of most NHIDOX enzyme, the plausible catalytic sites of protein can be forecasted using this structural bioinformatics approach.Keywords: Enzyme, catalytic sites, isopenicillin N synthase, ligand

    Establishment of the nasal microbiota in the first 18 months of life: Correlation with early-onset rhinitis and wheezing.

    Get PDF
    BACKGROUND: Dynamic establishment of the nasal microbiota in early life influences local mucosal immune responses and susceptibility to childhood respiratory disorders. OBJECTIVE: The aim of this case-control study was to monitor, evaluate, and compare development of the nasal microbiota of infants with rhinitis and wheeze in the first 18 months of life with those of healthy control subjects. METHODS: Anterior nasal swabs of 122 subjects belonging to the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) birth cohort were collected longitudinally over 7 time points in the first 18 months of life. Nasal microbiota signatures were analyzed by using 16S rRNA multiplexed pair-end sequencing from 3 clinical groups: (1) patients with rhinitis alone (n = 28), (2) patients with rhinitis with concomitant wheeze (n = 34), and (3) healthy control subjects (n = 60). RESULTS: Maturation of the nasal microbiome followed distinctive patterns in infants from both rhinitis groups compared with control subjects. Bacterial diversity increased over the period of 18 months of life in control infants, whereas infants with rhinitis showed a decreasing trend (P < .05). An increase in abundance of the Oxalobacteraceae family (Proteobacteria phylum) and Aerococcaceae family (Firmicutes phylum) was associated with rhinitis and concomitant wheeze (adjusted P < .01), whereas the Corynebacteriaceae family (Actinobacteria phylum) and early colonization with the Staphylococcaceae family (Firmicutes phylum; 3 weeks until 9 months) were associated with control subjects (adjusted P < .05). The only difference between the rhinitis and control groups was a reduced abundance of the Corynebacteriaceae family (adjusted P < .05). Determinants of nasal microbiota succession included sex, mode of delivery, presence of siblings, and infant care attendance. CONCLUSION: Our results support the hypothesis that the nasal microbiome is involved in development of early-onset rhinitis and wheeze in infants

    Comparative Analysis of Fecal Microbiota in Infants with and without Eczema

    Get PDF
    Eczema is a chronic form of childhood disorder that is gaining in prevalence in affluent societies. Previous studies hypothesized that the development of eczema is correlated with changes in microbial profile and composition of early life endemic microbiota, but contradictory conclusions were obtained, possibly due to the lack of minimization of apparent non-health related confounders (e.g., age, antibiotic consumption, diet and mode of delivery). In this study, we recruited seven caesarean-delivered and total formula-fed infants, and comparatively examined the early-life endemic microbiota in these infants with and without eczema. Using 16S pyrosequencing, infants' fecal microbiota were observed to comprise Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as the four main phyla, and the presence and absence of specific populations within these four phyla are primarily mediated by ageing. Quantitative analysis of bacterial targets on a larger sample size (n = 36 at 1, 3, and 12 months of age) revealed that the abundances of Bifidobacterium and Enterobacteriaceae were different among caesarean-delivered infants with and without eczema, and the bacterial targets may be potential biomarkers that can correlate to the health status of these infants. Our overall findings suggest that the minimization of possible confounders is essential prior to comparative evaluation and correlation of fecal microbiota to health status, and that stool samples collected from caesarean-delivered infants at less than 1 year of age may represent a good cohort to study for potential biomarkers that can distinguish infants with eczema from those without. These findings would greatly facilitate future efforts in understanding the possible pathogenesis behind certain bacterial targets, and may lead to a timely intervention that reduces the occurrence of early life eczema and possibly allergic disorders in later life

    Longitudinal assessment of antibiotic resistance gene profiles in gut microbiomes of infants at risk of eczema

    No full text
    Background: While there is increasing knowledge about the gut microbiome, the factors influencing and the significance of the gut resistome are still not well understood. Infant gut commensals risk transferring multidrug-resistant antibiotic resistance genes (ARGs) to pathogenic bacteria. The rapid spread of multidrug-resistant pathogenic bacteria is a worldwide public health concern. Better understanding of the naïve infant gut resistome may build the evidence base for antimicrobial stewardship in both humans and in the food industry. Given the high carriage rate of extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in Asia, we aimed to evaluate community prevalence, dynamics, and longitudinal changes in antibiotic resistance gene (ARG) profiles and prevalence of ESBL-producing E. coli and K. pneumoniae in the intestinal microbiome of infants participating in the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) study, a longitudinal cohort study of pregnant women and their infants. Methods: We analysed ARGs in the first year of life among 75 infants at risk of eczema who had stool samples collected at multiple timepoints using metagenomics. Results: The mean number of ARGs per infant increased with age. The most common ARGs identified confer resistance to aminoglycoside, beta-lactam, macrolide and tetracycline antibiotics; all infants harboured these antibiotic resistance genes at some point in the first year of life. Few ARGs persisted throughout the first year of life. Beta-lactam resistant Escherichia coli and Klebsiella pneumoniae were detected in 4 (5.3%) and 32 (42.7%) of subjects respectively. Conclusion: In this longitudinal cohort study of infants living in a region with high endemic antibacterial resistance, we demonstrate that majority of the infants harboured several antibiotic resistance genes in their gut and showed that the infant gut resistome is diverse and dynamic over the first year of life.Agency for Science, Technology and Research (A*STAR)Ministry of Health (MOH)National Medical Research Council (NMRC)National Research Foundation (NRF)Published versionThe study was supported by the National Medical Research Council Clinician Scientists Individual Research Grant (R-178-000-222-511) provided by the Ministry of Health (Singapore). This research is also supported by the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), Singapore- NMRC/TCR/004-NUS/2008; NMRC/TCR/012-NUHS/2014. Additional funding is provided by the Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore. The funders are not involved in the design and conduct of the study, data analysis and preparation of manuscript

    Atopic dermatitis trajectories to age 8 years in the GUSTO cohort.

    Get PDF
    Background:The heterogeneity of childhood atopic dermatitis (AD) underscores the need to understand latent phenotypes that may inform risk stratification and disease prognostication.Objective:To identify AD trajectories across the first 8 years of life and investigate risk factors associated with each trajectory and their relationships with other comorbidities.Methods:Data were collected prospectively from 1152 mother-offspring dyads in the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort from ages 3 months to 8 years. AD was defined based on parent-reported doctor's diagnosis. An unsupervised machine learning technique was used to determine AD trajectories.Results:Three AD trajectories were identified as follows: early-onset transient (6.3%), late-onset persistent (6.3%) and early-onset persistent (2.1%), alongside a no AD/reference group (85.2%). Early-onset transient AD was positively associated with male gender, family history of atopy, house dust mite sensitization and some measures of wheezing. Early-onset persistent AD was associated with antenatal/intrapartum antibiotic use, food sensitization and some measures of wheezing. Late-onset persistent AD was associated with a family history of atopy, some measures of house dust mite sensitization and some measures of allergic rhinitis and wheezing.Conclusion and Clinical Relevance:Three AD trajectories were identified in this birth cohort, with different risk factors and prognostic implications. Further work is needed to understand the molecular and immunological origins of these phenotypes.<br/

    Atopic dermatitis trajectories to age 8 years in the GUSTO cohort.

    No full text
    Background:The heterogeneity of childhood atopic dermatitis (AD) underscores the need to understand latent phenotypes that may inform risk stratification and disease prognostication.Objective:To identify AD trajectories across the first 8 years of life and investigate risk factors associated with each trajectory and their relationships with other comorbidities.Methods:Data were collected prospectively from 1152 mother-offspring dyads in the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort from ages 3 months to 8 years. AD was defined based on parent-reported doctor's diagnosis. An unsupervised machine learning technique was used to determine AD trajectories.Results:Three AD trajectories were identified as follows: early-onset transient (6.3%), late-onset persistent (6.3%) and early-onset persistent (2.1%), alongside a no AD/reference group (85.2%). Early-onset transient AD was positively associated with male gender, family history of atopy, house dust mite sensitization and some measures of wheezing. Early-onset persistent AD was associated with antenatal/intrapartum antibiotic use, food sensitization and some measures of wheezing. Late-onset persistent AD was associated with a family history of atopy, some measures of house dust mite sensitization and some measures of allergic rhinitis and wheezing.Conclusion and Clinical Relevance:Three AD trajectories were identified in this birth cohort, with different risk factors and prognostic implications. Further work is needed to understand the molecular and immunological origins of these phenotypes.<br/
    corecore