9 research outputs found

    Acoustic mapping and monitoring of the seabed: From single-frequency to multispectral multibeam backscatter

    No full text
    With the increasing human activities in the marine environment, such as fisheries, dredging, coastal protection or construction of marine infrastructure, seabed sediment and habitat mapping have become highly relevant for the development of sustainable marine management strategies. Compared to traditional mapping methods, primarily based on bed sampling, multibeam echosounding belongs to the cutting-edge technology to time-efficiently acquire high-resolution bathymetric and backscatter (BS) data over large areas. Using classification methods to combine the acoustic data with ground-truthing, large-scale maps can be automatically and objectively produced, that enables to describe the distribution of benthic habitats or quantify marine resources. However, acoustic sediment classification still does not allow to discriminate between the entire heterogeneity of the seabed and is generally applied to a single multibeam echosounder dataset by means of revealing the seabed state only at a given time instant. Two challenging issues addressed within the scope of this thesis are summarized as: (1) Investigation on the applicability of repetitive multibeam (single-frequency) BS measurements for monitoring the seabed; and (2) Evaluation of the potential of multispectral BS to increase the acoustic discrimination between different seabed environments.Aircraft Noise and Climate Effect

    Mapping the seabed and shallow subsurface with multi-frequency multibeam echosounders

    No full text
    Multi-frequency multibeam backscatter (BS) has indicated, in particular for fine sediments, the potential for increasing the discrimination between different seabed environments. Fine sediments are expected to have a varying signal penetration within the frequency range of modern multibeam echosounders (MBESs). Therefore, it is unknown to what extent the multispectral MBES data represent the surface of the seabed or different parts of the subsurface. Here, the effect of signal penetration on the measured multi-frequency BS and bathymetry is investigated. To this end, two multi-frequency datasets (90 to 450 kHz) were acquired with an R2Sonic 2026 MBES, supported by ground-truthing, in the Vlietland Lake and Port of Rotterdam (The Netherlands). In addition, a model to simulate the MBES bathymetric measurements in a layered medium is developed. The measured bathymetry difference between the lowest (90 kHz) and highest frequency (450 kHz) in areas with muddy sediments reaches values up to 60 cm dependent on the location and incident angle. In spatial correspondence with the variation in the depth difference, the BS level at the lowest frequency varies by up to 15 dB for the muddy sediments while the BS at the highest frequency shows only small variations. A comparison of the acoustic results with the ground-truthing, geological setting and model indicates that the measured bathymetry and BS at the different frequencies correspond to different parts of the seabed. However, the low-frequency BS cannot be directly related to a subsurface layer because of a significant sound attenuation in the upper layer. The simulation of the MBES bottom detection indicates that the bathymetry measured at the highest and lowest frequency can be used to determine the thickness of thin layers (20 cm). However, with an increasing layer thickness, the bottom detection becomes more sensitive to the incident angle and small variations in the sediment properties. Consequently, an accurate determination of the layer thickness is hampered. Based on this study, it is highly recommended to analyze multi-frequency BS in combination with the inter-frequency bathymetry difference to ensure a correct interpretation and classification of multi-frequency BS data.Aircraft Noise and Climate Effect

    Geostatistical modelling of multibeam backscatter for full-coverage seabed sediment maps

    No full text
    Extensive seabed sediment mapping is highly relevant to describe marine ecosystems and to quantify the distribution and extent of benthic habitats. Compared to traditional mapping methods, primarily based on bed sampling, multibeam echo sounding (MBES) is a time-efficient tool to acquire high-resolution bathymetric and backscatter data over large areas. We use a Bayesian method for unsupervised acoustic sediment classification (ASC) of MBES backscatter data of the Cleaver Bank, Netherlands Continental Shelf. On these sparsely distributed backscatter datasets, we tested and evaluated different Kriging algorithms, showing that Ordinary Kriging results in a reliable map. We introduce a new approach to classify interpolated MBES backscatter based on the Bayesian method for producing full-coverage sediment maps. Comparison to a traditional sediment map and in situ measurements shows that this approach resolves lateral heterogeneities (kilometers). When evaluating the high-resolution sediment map obtained from the Bayesian method, based on the actual backscatter, mapping laterally heterogeneous sediments significantly improved (meters). In order to create the optimal sediment map, we aimed to integrate ASC into existing maps, which, however, requires quantified spatial uncertainties of both considered maps. Finally, the low discrimination power of MBES backscatter for coarse sediments is highlighted as a shortcoming of current ASC mapping.Aircraft Noise and Climate Effect

    Performance of Multibeam Echosounder Backscatter-Based Classification for Monitoring Sediment Distributions Using Multitemporal Large-Scale Ocean Data Sets

    No full text
    Obtaining an overview of the spatial and temporal distribution of seabed sediments is of high interest for multiple research disciplines. Multibeam echosounders allow for the mapping of seabed sediments with high area coverage. In this paper, the repeatability of acoustic classification derived from multibeam echosounder backscatter is addressed. To this end, multibeam echosounder backscatter data acquired on the Cleaver Bank (North Sea) during five different surveys is employed using two different classification methods, i.e., a method based on the principal component analyses and the Bayesian technique. Different vessels were used for the different surveys. The comparison of the classification results between the different surveys indicates good repeatability. This repeatability demonstrates the potential of using backscatter for long-term environmental monitoring. However, the use of different classification methods results in somewhat different classification maps. Monitoring, therefore, requires the consistent use of a single method. Furthermore, it is found that the statistical characteristics of backscatter is such that clustering algorithms are less suited to discern the number of sediment types present in the study area. The Bayesian technique accounting for backscatter statistics is therefore recommended. A strong positive correlation between backscatter and median grain size for finer sediments (<0.5 mm) using a frequency of 300 kHz is observed within the study area, but an ambiguity is found for sediments with median grain sizes >0.5 mm. Consequently, for the situation considered a unique assignment of sediment type to acoustic class is not possible for these coarser sediments.Aircraft Noise and Climate Effect

    Monitoring underwater nourishments using multibeam bathymetric and backscatter time series

    No full text
    Natural and man-induced coastal erosion endanger life and environment in coastal areas worldwide. For sedimentary barrier coasts, beach and underwater nourishments are an efficient coastal protection strategy. To optimize nourishments and to understand their impact on the marine environment, monitoring strategies are required. In this study, we investigate the potential of multibeam echosounder (MBES) data, providing both bathymetry and backscatter (BS), for monitoring the evolution of the nourished sediment and morphodynamics over time. A time series of seven MBES measurements, as well as two sets of box cores, vibrocores and seismic data were acquired of a channel-side nourishment near the Wadden Sea island Ameland (The Netherlands), between April 2017 and May 2019. In general, a high confidence of the acoustic reliability of the BS time series measurements is demonstrated. The unsupervised Bayesian classification method, supported by ground-truthing, is employed to produce a time series of sediment maps, revealing sediments ranging from sandy mud to sand with varying amounts of shell fragments. Based on the sediment maps, the nourished sediment could be distinguished from the natural sediment. Within one year, the shell-rich pre-nourishment seabed is recreated by washing out finer sediments, which are deposited towards the main tidal channel. Using the seismic data and vibrocores, the shell-rich pre-nourishment seabed could be identified in the subsurface after being buried by the nourishments, supporting the general findings. Furthermore, a rapid development of steep bedforms with increasing sediment sorting is observed in parts of the nourished areas. This study shows that high-resolution sediment maps obtained from a time series of MBES BS together with bathymetry reveal morphodynamic and sedimentary processes of nourishment evolution and can advance underwater nourishment strategies.Aircraft Noise and Climate Effect

    Assessing the repeatability of sediment classfication method and the limitations of using depth residuals

    No full text
    Knowing the morphology and sediment composition of the seabed is of high importance for various applications. In this contribution, the repeatability of acoustic seafloor classification (ASC) results obtained from MBES backscatter value is investigated. The unsupervised classification algorithm based on Principal Component Analysis has been applied to the MBES backscatter acquired in the Cleaver Bank, Netherlands Continental Shelf, during five different surveys with two vessels. In general, there is good repeatability between surveys demonstrating the potential of using backscatter for marine environmental monitoring. To increase the discrimination performance the so-called depth residuals can be used. These are derived from the bathymetric measurements and considered to be representative for the sediment roughness. The challenge is that the small-scale depth variations are not solely dependent on the sediment roughness but also on the intrinsic uncertainties inherent to the MBES system. An A-Priori Multibeam Uncertainty Simulation Tool (AMUST) has been developed to predict the depth errors induced by various contributors. Correcting the measured depths for these uncertainties, as predicted by AMUST, theoretically provides information about the actual sediment roughness and this should improve the ASC algorithms. This was first tested on a MBES data set from Shallow Survey Conference Plymouth, 2015. It was shown that for the water depth of 20 m the standard deviation of the depth measurements was in agreement with AMUST predictions indicating a smooth seafloor, however, discrepancies between the predictions and real measurements occurred for the water depth of 8 m which is an indication of roughness or morphological features. This indicates the necessity of knowledge about the uncertainties when the objective is to derive the sediment roughness from MBES measurements.Aircraft Noise and Climate Effect

    A multispectral bayesian classification method for increased acoustic discrimination of seabed sediments using multi-frequency multibeam backscatter data

    No full text
    Multi-frequency backscatter data collected from multibeam echosounders (MBESs) is increasingly becoming available. The ability to collect data at multiple frequencies at the same time is expected to allow for better discrimination between seabed sediments. We propose an extension of the Bayesian method for seabed classification to multi-frequency backscatter. By combining the information retrieved at single frequencies we produce a multispectral acoustic classification map, which allows us to distinguish more seabed environments. In this study we use three triple-frequency (100, 200, and 400 kHz) backscatter datasets acquired with an R2Sonic 2026 in the Bedford Basin, Canada in 2016 and 2017 and in the Patricia Bay, Canada in 2016. The results are threefold: (1) combining 100 and 400 kHz, in general, reveals the most additional information about the seabed; (2) the use of multiple frequencies allows for a better acoustic discrimination of seabed sediments than single-frequency data; and (3) the optimal frequency selection for acoustic sediment classification depends on the local seabed. However, a quantification of the benefit using multiple frequencies cannot clearly be determined based on the existing ground-truth data. Still, a qualitative comparison and a geological interpretation indicate an improved discrimination between different seabed environments using multi-frequency backscatter.Aircraft Noise and Climate Effect
    corecore