4,111 research outputs found

    Searching for cavities of various densities in the Earth's crust with a low-energy electron-antineutrino beta-beam

    Full text link
    We propose searching for deep underground cavities of different densities in the Earth's crust using a long-baseline electron-antineutrino disappearance experiment, realized through a low-energy beta-beam with highly-enhanced luminosity. We focus on four cases: cavities with densities close to that of water, iron-banded formations, heavier mineral deposits, and regions of abnormal charge accumulation that have been posited to appear prior to the occurrence of an intense earthquake. The sensitivity to identify cavities attains confidence levels higher than 3σ3\sigma and 5σ5\sigma for exposures times of 3 months and 1.5 years, respectively, and cavity densities below 1 g cm3^{-3} or above 5 g cm3^{-3}, with widths greater than 200 km. We reconstruct the cavity density, width, and position, assuming one of them known while keeping the other two free. We obtain large allowed regions that improve as the cavity density differs more from the Earth's mean density. Furthermore, we demonstrate that knowledge of the cavity density is important to obtain O(10%) error on the width. Finally, we introduce an observable to quantify the presence of a cavity by changing the orientation of the electron-antineutrino beam, with which we are able to identify the presence of a cavity at the 2σ2\sigma to 5σ5\sigma C.L.Comment: 7 pages, 5 figures; matches published versio

    Monthly-averaged hourly solar diffuse radiation models for world-wide locations

    Get PDF

    A Framework for Evaluating Security in the Presence of Signal Injection Attacks

    Full text link
    Sensors are embedded in security-critical applications from medical devices to nuclear power plants, but their outputs can be spoofed through electromagnetic and other types of signals transmitted by attackers at a distance. To address the lack of a unifying framework for evaluating the effects of such transmissions, we introduce a system and threat model for signal injection attacks. We further define the concepts of existential, selective, and universal security, which address attacker goals from mere disruptions of the sensor readings to precise waveform injections. Moreover, we introduce an algorithm which allows circuit designers to concretely calculate the security level of real systems. Finally, we apply our definitions and algorithm in practice using measurements of injections against a smartphone microphone, and analyze the demodulation characteristics of commercial Analog-to-Digital Converters (ADCs). Overall, our work highlights the importance of evaluating the susceptibility of systems against signal injection attacks, and introduces both the terminology and the methodology to do so.Comment: This article is the extended technical report version of the paper presented at ESORICS 2019, 24th European Symposium on Research in Computer Security (ESORICS), Luxembourg, Luxembourg, September 201

    Interface-Induced Plasmon Nonhomogeneity in Nanostructured Metal-Dielectric Planar Metamaterial

    Get PDF
    Transformations of the electronic structure in thin silver layers in metal-dielectric (TiAlN/Ag) multilayer nanocomposite were investigated by a set of electron spectroscopy techniques. Localization of the electronic states in the valence band and reduction of electron concentration in the conduction band was observed. This led to decreasing metallic properties of silver in the thin films. A critical layer thickness of 23.5 nm associated with the development of quantum effects was determined by X-ray photoelectron spectroscopy. Scanning Auger electron microscopy of characteristic energy losses provided images of plasmon localization in the Ag layers. The nonuniformity of plasmon intensities distribution near the metal-nitride interfaces was assessed experimentally

    Variation in Sensitivity of Different Grapevine Genotypes to Erysiphe necator Growing under Unfavourable Climatic Conditions

    Get PDF
    This paper reports the susceptibility to powdery mildew of 41 grapevine genotypes growing in the north and northwest of Spain over a three-year period. Although the humid climate of these vine-growing areas is not particularly favourable to the development of this disease, serious damages appears in some years when dry weather alternates with times of some rain. All the examined genotypes belonged to the collection of the Misión Biológica de Galicia (CSIC) (Pontevedra, Galicia, Spain). The incidence and severity of powdery mildew were determined on leaves three weeks after the onset of flowering and on clusters at harvest. The values for both variables were smaller than those recorded for other fungal diseases, although great differences in susceptibility between the different genotypes were observed. The most susceptible was Castañal (recently included in the Spanish Registry of Commercial Varieties), a genotype native to the O Rosal subzone of the Rias Baixas denomination of origin area. The present results could help viticulturalists grow different grapevine genotypes more successfully in regions with climatic conditions similar to those where the study was undertaken

    Protective Coatings for Low-Cost Bipolar Plates and Current Collectors of Proton Exchange Membrane Electrolyzers for Large Scale Energy Storage from Renewables

    Get PDF
    Hydrogen produced by proton exchange membrane (PEM) electrolysis technology is a promising solution for energy storage, integration of renewables, and power grid stabilization for a cross-sectoral green energy chain. The most expensive components of the PEM electrolyzer stack are the bipolar plates (BPPs) and porous transport layers (PTLs), depending on the design. The high cost is due to the fact that the employed materials need to withstand corrosion at 2 V in acidic environment. Currently, only titanium is the material of choice for the anode side. We use vacuum plasma spraying (VPS) technology to apply highly stable coatings of titanium and niobium to protect stainless steel BPPs from the oxidative conditions on the anode side. The latter is able to decrease the interfacial contact resistance and improves the long-term stability of the electrolyzer. Furthermore, porous transport layers (PTL) can be realized by VPS as well. These coatings can be produced on existing titanium current collectors acting as macro porous layers (MPL). Lastly, free standing multifunctional structures with optimized tortuosity, capillary pressure and gradient porosity are used as current collectors. The coatings and porous structures developed by VPS enable the reduction of the required material and costs without performance losses

    General bounds on non-standard neutrino interactions

    Full text link
    We derive model-independent bounds on production and detection non-standard neutrino interactions (NSI). We find that the constraints for NSI parameters are around O(10^{-2}) to O(10^{-1}). Furthermore, we review and update the constraints on matter NSI. We conclude that the bounds on production and detection NSI are generally one order of magnitude stronger than their matter counterparts.Comment: 18 pages, revtex4, 1 axodraw figure. Minor changes, matches published versio
    corecore