7,876 research outputs found

    Thrifty swimming with shear-thinning

    Get PDF
    Microscale propulsion is integral to numerous biomedical systems, for example biofilm formation and human reproduction, where the surrounding fluids comprise suspensions of polymers. These polymers endow the fluid with non-Newtonian rheological properties, such as shear-thinning and viscoelasticity. Thus, the complex dynamics of non-Newtonian fluids presents numerous modelling challenges, strongly motivating experimental study. Here, we demonstrate that failing to account for "out-of-plane" effects when analysing experimental data of undulatory swimming through a shear-thinning fluid results in a significant overestimate of fluid viscosity around the model swimmer C. elegans. This miscalculation of viscosity corresponds with an overestimate of the power the swimmer expends, a key biophysical quantity important for understanding the internal mechanics of the swimmer. As experimental flow tracking techniques improve, accurate experimental estimates of power consumption using this technique will arise in similar undulatory systems, such as the planar beating of human sperm through cervical mucus, will be required to probe the interaction between internal power generation, fluid rheology, and the resulting waveform

    Undulatory swimming in fluids with polymer networks

    Full text link
    The motility behavior of the nematode Caenorhabditis elegans in polymeric solutions of varying concentrations is systematically investigated in experiments using tracking and velocimetry methods. As the polymer concentration is increased, the solution undergoes a transition from the semi-dilute to the concentrated regime, where these rod-like polymers entangle, align, and form networks. Remarkably, we find an enhancement in the nematode's swimming speed of approximately 65% in concentrated solutions compared to semi-dilute solutions. Using velocimetry methods, we show that the undulatory swimming motion of the nematode induces an anisotropic mechanical response in the fluid. This anisotropy, which arises from the fluid micro-structure, is responsible for the observed increase in swimming speed.Comment: Published 1 November 2013 in Europhysics Letter

    X,Y,Z-Waves: Extended Structures in Nonlinear Lattices

    Get PDF
    Motivated by recent experimental and theoretical results on optical X-waves, we propose a new type of waveforms in 2D and 3D discrete media -- multi-legged extended nonlinear structures (ENS), built as arrays of lattice solitons (tiles or stones, in the 2D and 3D cases, respectively). First, we study the stability of the tiles and stones analytically, and then extend them numerically to complete ENS forms for both 2D and 3D lattices. The predicted patterns are relevant to a variety of physical settings, such as Bose-Einstein condensates in deep optical lattices, lattices built of microresonators, photorefractive crystals with optically induced lattices (in the 2D case) and others.Comment: 4 pages, 4 figure

    Results for the response function determination of the Compact Neutron Spectrometer

    Full text link
    The Compact Neutron Spectrometer (CNS) is a Joint European Torus (JET) Enhancement Project, designed for fusion diagnostics in different plasma scenarios. The CNS is based on a liquid scintillator (BC501A) which allows good discrimination between neutron and gamma radiation. Neutron spectrometry with a BC501A spectrometer requires the use of a reliable, fully characterized detector. The determination of the response matrix was carried out at the Ion Accelerator Facility (PIAF) of the Physikalisch-Technische Bundesanstalt (PTB). This facility provides several monoenergetic beams (2.5, 8, 10, 12 and 14 MeV) and a 'white field'(Emax ~17 MeV), which allows for a full characterization of the spectrometer in the region of interest (from ~1.5 MeV to ~17 MeV. The energy of the incoming neutrons was determined by the time of flight method (TOF), with time resolution in the order of 1 ns. To check the response matrix, the measured pulse height spectra were unfolded with the code MAXED and the resulting energy distributions were compared with those obtained from TOF. The CNS project required modification of the PTB BC501A spectrometer design, to replace an analog data acquisition system (NIM modules) with a digital system developed by the 'Ente per le Nuove tecnologie, l'Energia e l'Ambiente' (ENEA). Results for the new digital system were evaluated using new software developed specifically for this project.Comment: Proceedings of FNDA 201

    Group classification of (1+1)-Dimensional Schr\"odinger Equations with Potentials and Power Nonlinearities

    Full text link
    We perform the complete group classification in the class of nonlinear Schr\"odinger equations of the form iψt+ψxx+ψγψ+V(t,x)ψ=0i\psi_t+\psi_{xx}+|\psi|^\gamma\psi+V(t,x)\psi=0 where VV is an arbitrary complex-valued potential depending on tt and x,x, γ\gamma is a real non-zero constant. We construct all the possible inequivalent potentials for which these equations have non-trivial Lie symmetries using a combination of algebraic and compatibility methods. The proposed approach can be applied to solving group classification problems for a number of important classes of differential equations arising in mathematical physics.Comment: 10 page

    Baryon Asymmetry of the Universe without Boltzmann or Kadanoff-Baym

    Full text link
    We present a formalism that allows the computation of the baryon asymmetry of the universe from first principles of statistical physics and quantum field theory that is applicable to certain types of beyond the Standard Model physics (such as the neutrino Minimal Standard Model -- ν\nuMSM) and does not require the solution of Boltzmann or Kadanoff-Baym equations. The formalism works if a thermal bath of Standard Model particles is very weakly coupled to a new sector (sterile neutrinos in the ν\nuMSM case) that is out-of-equilibrium. The key point that allows a computation without kinetic equations is that the number of sterile neutrinos produced during the relevant cosmological period remains small. In such a case, it is possible to expand the formal solution of the von Neumann equation perturbatively and obtain a master formula for the lepton asymmetry expressed in terms of non-equilibrium Wightman functions. The master formula neatly separates CP-violating contributions from finite temperature correlation functions and satisfies all three Sakharov conditions. These correlation functions can then be evaluated perturbatively; the validity of the perturbative expansion depends on the parameters of the model considered. Here we choose a toy model (containing only two active and two sterile neutrinos) to illustrate the use of the formalism, but it could be applied to other models.Comment: 26 pages, 10 figure

    Limits on Lorentz Violation from the Highest Energy Cosmic Rays

    Full text link
    We place several new limits on Lorentz violating effects, which can modify particles' dispersion relations, by considering the highest energy cosmic rays observed. Since these are hadrons, this involves considering the partonic content of such cosmic rays. We get a number of bounds on differences in maximum propagation speeds, which are typically bounded at the 10^{-21} level, and on momentum dependent dispersion corrections of the form v = 1 +- p^2/Lambda^2, which typically bound Lambda > 10^{21} GeV, well above the Planck scale. For (CPT violating) dispersion correction of the form v = 1 + p/Lambda, the bounds are up to 15 orders of magnitude beyond the Planck scale.Comment: 24 pages, no figures. Added references, very slight changes. Version published in Physical Review

    Universal Heat Conduction in YBa_2Cu_3O_6.9

    Full text link
    The thermal conductivity of YBa_2Cu_3O_6.9 was measured at low temperatures in untwinned single crystals with concentrations of Zn impurities from 0 to 3% of Cu. A linear term kappa_0/T = 0.19 mW/K^2.cm is clearly resolved as T -> 0, and found to be virtually independent of Zn concentration. The existence of this residual normal fluid strongly validates the basic theory of transport in unconventional superconductors. Moreover, the observed universal behavior is in quantitative agreement with calculations for a gap function of d-wave symmetry.Comment: Latex file, 4 pages, 3 EPS figures, to appear in Physical Review Letter

    Exact Soliton-like Solutions of the Radial Gross-Pitaevskii Equation

    Full text link
    We construct exact ring soliton-like solutions of the cylindrically symmetric (i.e., radial) Gross- Pitaevskii equation with a potential, using the similarity transformation method. Depending on the choice of the allowed free functions, the solutions can take the form of stationary dark or bright rings whose time dependence is in the phase dynamics only, or oscillating and bouncing solutions, related to the second Painlev\'e transcendent. In each case the potential can be chosen to be time-independent.Comment: 8 pages, 7 figures. Version 2: stability analysis of the dark solutio
    corecore