3,034 research outputs found

    A 100-element HBT grid amplifier

    Get PDF
    A 100-element 10-GHz grid amplifier has been developed. The active devices in the grid are chips with heterojunction-bipolar-transistor (HBT) differential pairs. The metal grid pattern was empirically designed to provide effective coupling between the HBTs and free space. Two independent measurements, one with focusing lenses and the other without, were used to characterize the grid. In each case, the peak gain was 10 dB at 10 GHz with a 3-dB bandwidth of 1 GHz. The input and output return losses were better than 15 dB at 10 GHz. The maximum output power was 450 mW, and the minimum noise figure was 7 dB. By varying the bias, a signal could be amplitude modulated with a modulation index as large as 0.65. Tests show that the grid was quite tolerant of failures-the output power dropped by only 1 dB when 10% of the inputs were detuned. The grid amplifier is a multimode device that amplifies beams of different shapes and angles. Beams with incidence angles up to 30° were amplified with less than a 3-dB drop in gain

    Fluid-Induced Propulsion of Rigid Particles in Wormlike Micellar Solutions

    Get PDF
    In the absence of inertia, a reciprocal swimmer achieves no net motion in a viscous Newtonian fluid. Here, we investigate the ability of a reciprocally actuated particle to translate through a complex fluid that possesses a network using tracking methods and birefringence imaging. A geometrically polar particle, a rod with a bead on one end, is reciprocally rotated using magnetic fields. The particle is immersed in a wormlike micellar (WLM) solution that is known to be susceptible to the formation of shear bands and other localized structures due to shear-induced remodeling of its microstructure. Results show that the nonlinearities present in this WLM solution break time-reversal symmetry under certain conditions, and enable propulsion of an artificial "swimmer." We find three regimes dependent on the Deborah number (De): net motion towards the bead-end of the particle at low De, net motion towards the rod-end of the particle at intermediate De, and no appreciable propulsion at high De. At low De, where the particle time-scale is longer then the fluid relaxation time, we believe that propulsion is caused by an imbalance in the fluid first normal stress differences between the two ends of the particle (bead and rod). At De~1, however, we observe the emergence of a region of network anisotropy near the rod using birefringence imaging. This anisotropy suggests alignment of the micellar network, which is "locked in" due to the shorter time-scale of the particle relative to the fluid

    Daily Step Count Predicts Acute Exacerbations in a US Cohort with COPD

    Get PDF
    Background: COPD is characterized by variability in exercise capacity and physical activity (PA), and acute exacerbations (AEs). Little is known about the relationship between daily step count, a direct measure of PA, and the risk of AEs, including hospitalizations. Methods: In an observational cohort study of 169 persons with COPD, we directly assessed PA with the StepWatch Activity Monitor, an ankle-worn accelerometer that measures daily step count. We also assessed exercise capacity with the 6-minute walk test (6MWT) and patient-reported PA with the St. George's Respiratory Questionnaire Activity Score (SGRQ-AS). AEs and COPD-related hospitalizations were assessed and validated prospectively over a median of 16 months. Results: Mean daily step count was 5804±3141 steps. Over 209 person-years of observation, there were 263 AEs (incidence rate 1.3±1.6 per person-year) and 116 COPD-related hospitalizations (incidence rate 0.56±1.09 per person-year). Adjusting for FEV1 % predicted and prednisone use for AE in previous year, for each 1000 fewer steps per day walked at baseline, there was an increased rate of AEs (rate ratio 1.07; 95%CI = 1.003–1.15) and COPD-related hospitalizations (rate ratio 1.24; 95%CI = 1.08–1.42). There was a significant linear trend of decreasing daily step count by quartiles and increasing rate ratios for AEs (P = 0.008) and COPD-related hospitalizations (P = 0.003). Each 30-meter decrease in 6MWT distance was associated with an increased rate ratio of 1.07 (95%CI = 1.01–1.14) for AEs and 1.18 (95%CI = 1.07–1.30) for COPD-related hospitalizations. Worsening of SGRQ-AS by 4 points was associated with an increased rate ratio of 1.05 (95%CI = 1.01–1.09) for AEs and 1.10 (95%CI = 1.02–1.17) for COPD-related hospitalizations. Conclusions: Lower daily step count, lower 6MWT distance, and worse SGRQ-AS predict future AEs and COPD–related hospitalizations, independent of pulmonary function and previous AE history. These results support the importance of assessing PA in patients with COPD, and provide the rationale to promote PA as part of exacerbation-prevention strategies

    Valproate Protein Binding Is Highly Variable in ICU Patients and Not Predicted by Total Serum Concentrations: A Case Series and Literature Review

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136503/1/phar1912-sup-0001-SupInfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136503/2/phar1912_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136503/3/phar1912.pd

    Phase diagram of insulating crystal and quantum Hall states in ABC-stacked trilayer graphene

    Full text link
    In the presence of a perpendicular magnetic field, ABC-stacked trilayer graphene's chiral band structure supports a 12-fold degenerate N=0 Landau level (LL). Along with the valley and spin degrees of freedom, the zeroth LL contains additional quantum numbers associated with the LL orbital index % n=0,1,2. Remote inter-layer hopping terms and external potential difference ΔB\Delta_{B} between the layers lead to LL splitting by introducing a gap % \Delta_{LL} between the degenerate zero-energy triplet LL orbitals. Assuming that the spin and valley degrees of freedom are frozen, we study the phase diagram of this system resulting from competition of the single particle LL splitting and Coulomb interactions within the Hartree-Fock approximation at integer filling factors. Above a critical value ΔLLc\Delta_{LL}^{c} of the external potential difference i,e, for ∣ΔLL∣>ΔLLc|\Delta_{LL}| >\Delta_{LL}^{c}, the ground state is a uniform quantum Hall state where the electrons occupy the lowest unoccupied LL orbital index. For ∣ΔLL∣<ΔLLc|\Delta_{LL}| <\Delta_{LL}^{c} (which corresponds to large positive or negative values of ΔB\Delta_{B}) the uniform QH state is unstable to the formation of a crystal state at integer filling factors. This phase transition should be characterized by a Hall plateau transition as a function of ΔLL\Delta_{LL} at a fixed filling factor. We also study the properties of this crystal state and discuss its experimental detection.Comment: 16 pages with 13 figure

    KELT-20b: A Giant Planet with a Period of P ~ 3.5 days Transiting the V ~ 7.6 Early A Star HD 185603

    Get PDF
    We report the discovery of KELT-20b, a hot Jupiter transiting a V ~ 7.6 early A star, HD 185603, with an orbital period of P ≃ 3.47 days. Archival and follow-up photometry, Gaia parallax, radial velocities, Doppler tomography, and AO imaging were used to confirm the planetary nature of KELT-20b and characterize the system. From global modeling we infer that KELT-20 is a rapidly rotating (Îœ sin I* ≃ 120 km s^(-1)) A2V star with an effective temperature of T_(eff) = 8730^(+250)_(-260) K, mass of, M* = ^(+0.14)_(-0.20) M⊙ radius of, R* = 1.561^(+0.058)_(-0.064) R⊙ surface gravity of, log g* = 4.292^(+0.017)_(-0.020), and age of ≟600 Myr. The planetary companion has a radius of R_P = 1.735^(+0.070)_(-0.075) R_J, a semimajor axis of a = 0.0542^(+0.0014)_(-0.0021) au, and a linear ephemeris of BJD_(TDB) = 2457503.120049 ± 0.000190 + E(3.4741070 ± 0.0000019). We place a 3σ upper limit of ~3.5 M_J on the mass of the planet. Doppler tomographic measurements indicate that the planetary orbit normal is well aligned with the projected spin axis of the star (λ = 3.°4± 2.°1). The inclination of the star is constrained to 24.°4 < I* < 155.°6, implying a three-dimensional spin–orbit alignment of 1.°3 < ψ < 69.°8. KELT-20b receives an insolation flux of ~8 x 10^9 erg s^(-1) cm^(-2), implying an equilibrium temperature of of ~2250 K, assuming zero albedo and complete heat redistribution. Due to the high stellar T_(eff), KELT-20b also receives an ultraviolet (wavelength d â©œ 91.2 nm) insolation flux of ~9.1 x 10^4 erg s^(-1) cm^(-2), possibly indicating significant atmospheric ablation. Together with WASP-33, Kepler-13 A, HAT-P-57, KELT-17, and KELT-9, KELT-20 is the sixth A star host of a transiting giant planet, and the third-brightest host (in V) of a transiting planet

    Plasticity in the antipredator behavior of the orange-footed sea cucumber under shifting hydrodynamic forces

    Get PDF
    Marine invertebrates that move too slowly to evade unfavorable environmental change may instead exhibit phenotypic plasticity, allowing them to adjust to varying conditions. The orange-footed sea cucumber Cucumaria frondosa is a slow-moving suspension feeder that is preyed on by the purple sunstar Solaster endeca. The sea cucumber’s antipredator behavior involves changing shape and detaching from the substratum, which might increase its probability of being displaced by water motion into an unsuitable environment. We hypothesized that sea cucumbers’ antipredator responses would be diminished under stronger hydrodynamic forces, and that behavioral strategies would be flexible so that individuals could adjust to frequent changes in water flows. In a natural orange-footed sea cucumber habitat, individuals lived along a pronounced hydrodynamic gradient, allowing us to measure antipredator behavior under different water flow strengths. We placed purple sunstars in physical contact with sea cucumbers living at various points along the gradient to elicit antipredator responses. We then repeated this procedure in a laboratory mesocosm that generated weak and strong hydrodynamic forces similar to those observed at the field site. Subjects in the mesocosm experiment were tested in both wave conditions to determine if their antipredator behavior would change in response to sudden environmental change, as would be experienced under deteriorating sea conditions. Antipredator responses did not covary with hydrodynamic forces in the field. However, antipredator responses in the mesocosm experiment increased when individuals were transplanted from strong to weak forces and decreased when transplanted from weak to strong forces. Overall, our results indicate environmentally induced plasticity in the antipredator behavior of the orange-footed sea cucumber

    The script concordance test in radiation oncology: validation study of a new tool to assess clinical reasoning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Script Concordance test (SCT) is a reliable and valid tool to evaluate clinical reasoning in complex situations where experts' opinions may be divided. Scores reflect the degree of concordance between the performance of examinees and that of a reference panel of experienced physicians. The purpose of this study is to demonstrate SCT's usefulness in radiation oncology.</p> <p>Methods</p> <p>A 90 items radiation oncology SCT was administered to 155 participants. Three levels of experience were tested: medical students (n = 70), radiation oncology residents (n = 38) and radiation oncologists (n = 47). Statistical tests were performed to assess reliability and to document validity.</p> <p>Results</p> <p>After item optimization, the test comprised 30 cases and 70 questions. Cronbach alpha was 0.90. Mean scores were 51.62 (± 8.19) for students, 71.20 (± 9.45) for residents and 76.67 (± 6.14) for radiation oncologists. The difference between the three groups was statistically significant when compared by the Kruskall-Wallis test (p < 0.001).</p> <p>Conclusion</p> <p>The SCT is reliable and useful to discriminate among participants according to their level of experience in radiation oncology. It appears as a useful tool to document the progression of reasoning during residency training.</p

    A SAS macro for a clustered logrank test

    Get PDF
    The clustered logrank test is a nonparametric method of significance testing for correlated survival data. Examples of its application include cluster randomized trials where groups of patients rather than individuals are randomized to either a treatment or control intervention. We describe a SAS macro that implements the 2-sample clustered logrank test for data where the entire cluster is randomized to the same treatment group. We discuss the theory and applications behind this test as well as details of the SAS code
    • 

    corecore