40 research outputs found

    Effects of SARS-CoV-2 on Cardiovascular System: The Dual Role of Angiotensin-Converting Enzyme 2 (ACE2) as the Virus Receptor and Homeostasis Regulator-Review.

    Get PDF
    Angiotensin-converting enzyme 2 (ACE2) is the entry receptor for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of Coronavirus Disease-2019 (COVID-19) in humans. ACE-2 is a type I transmembrane metallocarboxypeptidase expressed in vascular endothelial cells, alveolar type 2 lung epithelial cells, renal tubular epithelium, Leydig cells in testes and gastrointestinal tract. ACE2 mediates the interaction between host cells and SARS-CoV-2 spike (S) protein. However, ACE2 is not only a SARS-CoV-2 receptor, but it has also an important homeostatic function regulating renin-angiotensin system (RAS), which is pivotal for both the cardiovascular and immune systems. Therefore, ACE2 is the key link between SARS-CoV-2 infection, cardiovascular diseases (CVDs) and immune response. Susceptibility to SARS-CoV-2 seems to be tightly associated with ACE2 availability, which in turn is determined by genetics, age, gender and comorbidities. Severe COVID-19 is due to an uncontrolled and excessive immune response, which leads to acute respiratory distress syndrome (ARDS) and multi-organ failure. In spite of a lower ACE2 expression on cells surface, patients with CVDs have a higher COVID-19 mortality rate, which is likely driven by the imbalance between ADAM metallopeptidase domain 17 (ADAM17) protein (which is required for cleavage of ACE-2 ectodomain resulting in increased ACE2 shedding), and TMPRSS2 (which is required for spike glycoprotein priming). To date, ACE inhibitors and Angiotensin II Receptor Blockers (ARBs) treatment interruption in patients with chronic comorbidities appears unjustified. The rollout of COVID-19 vaccines provides opportunities to study the effects of different COVID-19 vaccines on ACE2 in patients on treatment with ACEi/ARB

    Traditional and emerging biomarkers in asymptomatic left ventricular dysfunction\u2014promising non-coding rnas and exosomes as biomarkers in early phases of cardiac damage

    Get PDF
    Heart failure (HF) is one of the major causes of morbidity and mortality worldwide and represents an escalating problem for healthcare systems. The identification of asymptomatic patients with underlying cardiac subclinical disease would create an opportunity for early intervention and prevention of symptomatic HF. Traditional biomarkers are very useful as diagnostic and prognostic tools in the cardiovascular field; however, their application is usually limited to overt cardiac disease. On the other hand, a growing number of studies is investigating the diagnostic and prognostic potential of new biomarkers, such as micro-RNAs (miRNA), long non-coding RNAs, and exosome cargo, because of their involvement in the early phases of cardiac dysfunction. Unfor-tunately, their use in asymptomatic phases remains a distant goal. The aim of this review is to gather the current knowledge of old and novel biomarkers in the early diagnosis of cardiac dysfunction in asymptomatic individuals

    What the cardiologist needs to consider in the management of oncologic patients with stemi-like syndrome; A case report and literature review

    Get PDF
    In pre-hospital care, an accurate and quick diagnosis of ST-segment elevation myocardial infarction (STEMI) is imperative to promptly kick-off the STEMI network with a direct transfer to the cardiac catheterization laboratory (cath lab) in order to reduce myocardial infarction size and mortality. Aa atherosclerotic plaque rupture is the main mechanism responsible for STEMI. However, in a small percentage of patients, emergency coronarography does not reveal any significant coronary stenosis. The fluoropyrimidine agents such as 5-Fluorouracil (5-FU) and capecitabine, widely used to treat gastrointestinal, breast, head and neck cancers, either as a single agent or in combination with other chemotherapies, can cause potentially lethal cardiac side effects. Here, we present the case of a patient with 5-FU cardiotoxicity resulting in an acute coronary syndrome (ACS) with recurrent episodes of chest pain and ST-segment elevation.. Our case report highlights the importance of widening the knowledge among cardiologists of the side effects of chemotherapeutic drugs, especially considering the rising number of cancer patients around the world and that fluoropyrimidines are the main treatment for many types of cancer, both in adjuvant and advanced settings

    An Integrated Pharmacological Counselling Approach to Guide Decision-Making in the Treatment with CDK4/6 Inhibitors for Metastatic Breast Cancer

    Get PDF
    A wide inter-individual variability in the therapeutic response to cyclin-dependent kinases 4 and 6 inhibitors (CDKis) has been reported. We herein present a case series of five patients treated with either palbociclib or ribociclib referred to our clinical pharmacological counselling, including therapeutic drug monitoring (TDM), pharmacogenetics, and drug–drug interaction analysis to support clinicians in the management of CDKis treatment for metastatic breast cancer. Patients’ plasma samples for TDM analysis were collected at steady state and analyzed by an LC-MS/MS method for minimum plasma concentration (Cmin) evaluation. Under and overexposure to the drug were defined based on the mean Cmin values observed in population pharmacokinetic studies. Polymorphisms in selected genes encoding for proteins involved in drug absorption, distribution, metabolism, and elimination were analyzed (CYP3A4, CYP3A5, ABCB1, SLCO1B1, and ABCG2). Three of the five reported cases presented a CDKi plasma level above the population mean value and were referred for toxicity. One of them presented a low function ABCB1 haplotype (ABCB1-rs1128503, rs1045642, and rs2032582), possibly causative of both increased drug oral absorption and plasmatic concentration. Two patients showed underexposure to CDKis, and one of them was referred for early progression. In one patient, a CYP3A5*1/*3 genotype was found to be potentially responsible for more efficient drug metabolism and lower drug plasma concentration. This intensified pharmacological approach in clinical practice has been shown to be potentially effective in supporting prescribing oncologists with dose and drug selection and could be ultimately useful for increasing both the safety and efficacy profiles of CDKi treatment

    CYP2D6 and CYP2C8 pharmacogenetics and pharmacological interactions to predict imatinib plasmatic exposure in GIST patients

    Get PDF
    Patients on treatment with oral fixed dose imatinib are frequently under- or overexposed to the drug. We investigated the association between the gene activity score (GAS) of imatinib-metabolizing cytochromes (CYP3A4, CYP3A5, CYP2D6, CYP2C9, CYP2C19, CYP2C8) and imatinib and nor-imatinib exposure. We also investigated the impact of concurrent drug-drug-interactions (DDIs) on the association between GAS and imatinib exposure

    Prognostic Prediction of Genotype vs Phenotype in Genetic Cardiomyopathies

    Get PDF
    Background: Diverse genetic backgrounds often lead to phenotypic heterogeneity in cardiomyopathies (CMPs). Previous genotype-phenotype studies have primarily focused on the analysis of a single phenotype, and the diagnostic and prognostic features of the CMP genotype across different phenotypic expressions remain poorly understood. Objectives: We sought to define differences in outcome prediction when stratifying patients based on phenotype at presentation compared with genotype in a large cohort of patients with CMPs and positive genetic testing. Methods: Dilated cardiomyopathy (DCM), arrhythmogenic right ventricular cardiomyopathy, left-dominant arrhythmogenic cardiomyopathy, and biventricular arrhythmogenic cardiomyopathy were examined in this study. A total of 281 patients (80% DCM) with pathogenic or likely pathogenic variants were included. The primary and secondary outcomes were: 1) all-cause mortality (D)/heart transplant (HT); 2) sudden cardiac death/major ventricular arrhythmias (SCD/MVA); and 3) heart failure-related death (DHF)/HT/left ventricular assist device implantation (LVAD). Results: Survival analysis revealed that SCD/MVA events occurred more frequently in patients without a DCM phenotype and in carriers of DSP, PKP2, LMNA, and FLNC variants. However, after adjustment for age and sex, genotype-based classification, but not phenotype-based classification, was predictive of SCD/MVA. LMNA showed the worst trends in terms of D/HT and DHF/HT/LVAD. Conclusions: Genotypes were associated with significant phenotypic heterogeneity in genetic cardiomyopathies. Nevertheless, in our study, genotypic-based classification showed higher precision in predicting the outcome of patients with CMP than phenotype-based classification. These findings add to our current understanding of inherited CMPs and contribute to the risk stratification of patients with positive genetic testing

    Biomarkers in the management of acute heart failure: state of the art and role in COVID-19 era

    Get PDF
    Acute heart failure (AHF) affects millions of people worldwide, and it is a potentially life-threatening condition for which the cardiologist is more often brought into play. It is crucial to rapidly identify, among patients presenting with dyspnoea, those with AHF and to accurately stratify their risk, in order to define the appropriate setting of care, especially nowadays due to the coronavirus disease 2019 (COVID-19) outbreak. Furthermore, with physical examination being limited by personal protective equipment, the use of new alternative diagnostic and prognostic tools could be of extreme importance. In this regard, usage of biomarkers, especially when combined (a multimarker approach) is beneficial for establishment of an accurate diagnosis, risk stratification and post-discharge monitoring. This review highlights the use of both traditional biomarkers such as natriuretic peptides (NP) and troponin, and emerging biomarkers such as soluble suppression of tumourigenicity (sST2) and galectin-3 (Gal-3), from patients' emergency admission to discharge and follow-up, to improve risk stratification and outcomes in terms of mortality and rehospitalization

    Myocarditis: Which Role for Genetics?

    Get PDF
    Purpose of Review: Myocarditis is a polymorphic disease, both in its presentation and clinical course. Recent data suggests that the genetic background, interacting with environmental factors, could be diriment both in the susceptibility and evolution of myocarditis in different clinical presentations. The aim of this paper is to expose the current available evidences and the evolving concepts on this topic, in order to provide insight for improving the clinical management of those patients. In this regard, the main goal is an optimal characterization of each patient\u2019s risk, with the purpose of individualizing the treatment and the follow-up. Recent Findings: The latest research highlights the possible prognostic role of some pathogenic mutations that could create a vulnerable myocardium prone to myocardial inflammation and also to the development of a long-lasting cardiomyopathy. Summary: The identification of these genetic defects and of myocarditis patients requiring genetic testing is emerging as a challenge for the future. In fact, identifying a possible genetic background responsible for a particularly high-risk profile could be of extreme importance in improving management of myocarditis. This and many other aspects in the genetics of myocarditis remain uncovered, and further studies are expected based to refine our daily clinical practice
    corecore