40 research outputs found

    Targeting epigenetic alterations in cancer stem cells

    Get PDF
    Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by selfrenewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases

    MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b

    Get PDF
    Cancer stem cells (CSCs) are a small part of the heterogeneous tumor cell population possessing self-renewal and multilineage differentiation potential as well as a great ability to sustain tumorigenesis. The molecular pathways underlying CSC phenotype are not yet well characterized. MicroRNAs (miRs) are small noncoding RNAs that play a powerful role in biological processes. Early studies have linked miRs to the control of self-renewal and differentiation in normal and cancer stem cells. We aimed to study the functional role of miRs in human breast cancer stem cells (BCSCs), also named mammospheres. We found that miR-221 was upregulated in BCSCs compared to their differentiated counterpart. Similarly, mammospheres from T47D cells had an increased level of miR-221 compared to differentiated cells. Transfection of miR-221 in T47D cells increased the number of mammospheres and the expression of stem cell markers. Among miR-221's targets, we identified DNMT3b. Furthermore, in BCSCs we found that DNMT3b repressed the expression of various stemness genes, such as Nanog and Oct 3/4, acting on the methylation of their promoters, partially reverting the effect of miR-221 on stemness. We hypothesize that miR-221 contributes to breast cancer tumorigenicity by regulating stemness, at least in part through the control of DNMT3b expression

    IL4 primes the dynamics of breast cancer progression via DUSP4 inhibition

    Get PDF
    The tumor microenvironment supplies proinflammatory cytokines favoring a permissive milieu for cancer cell growth and invasive behavior. Here we show how breast cancer progression is facilitated by IL4 secreted by adipose tissue and estrogen receptor-positive and triple-negative breast cancer cell types. Blocking autocrine and paracrine IL4 signaling with the IL4R\uce\ub1 antagonist IL4DM compromised breast cancer cell proliferation, invasion, and tumor growth by downregulating MAPK pathway activity. IL4DM reduced numbers of CD44+/CD24-cancer stem-like cells and elevated expression of the dual specificity phosphatase DUSP4by inhibiting NF-\uce\ubaB. Enforced expression of DUSP4 drove conversion of metastatic cells to nonmetastatic cells. Mechanistically, RNAi-mediated attenuation of DUSP4activated the ERKand p38 MAPK pathways, increased stem-like properties, and spawned metastatic capacity. Targeting IL4 signaling sensitized breast cancer cells to anticancer therapy and strengthened immune responses by enhancing the number of IFN\uce\ub3-positive CTLs. Our results showed the role of IL4 in promoting breast cancer aggressiveness and how its targeting may improve the efficacy of current therapies

    MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b

    Get PDF
    Cancer stem cells (CSCs) are a small part of the heterogeneous tumor cell population possessing self-renewal and multilineage differentiation potential as well as a great ability to sustain tumorigenesis. The molecular pathways underlying CSC phenotype are not yet well characterized. MicroRNAs (miRs) are small noncoding RNAs that play a powerful role in biological processes. Early studies have linked miRs to the control of self-renewal and differentiation in normal and cancer stem cells. We aimed to study the functional role of miRs in human breast cancer stem cells (BCSCs), also named mammospheres. We found that miR-221 was upregulated in BCSCs compared to their differentiated counterpart. Similarly, mammospheres from T47D cells had an increased level of miR-221 compared to differentiated cells. Transfection of miR-221 in T47D cells increased the number of mammospheres and the expression of stem cell markers. Among miR-221's targets, we identified DNMT3b. Furthermore, in BCSCs we found that DNMT3b repressed the expression of various stemness genes, such as Nanog and Oct 3/4, acting on the methylation of their promoters, partially reverting the effect of miR-221 on stemness. We hypothesize that miR-221 contributes to breast cancer tumorigenicity by regulating stemness, at least in part through the control of DNMT3b expression

    Nobiletin and xanthohumol sensitize colorectal cancer stem cells to standard chemotherapy

    Get PDF
    Colorectal cancer (CRC) mortality is mainly caused by patient refractoriness to common anti-cancer therapies and consequent metastasis formation. Besides, the notorious toxic side effects of chemotherapy are a concurrent obstacle to be tackled. Thus, new treatment approaches are needed to effectively improve patient outcomes. Compelling evidence demonstrated that cancer stem cells (CSCs) are responsible for treatment failure and relapse. New natural treatment approaches showed capabilities to selectively target the CSC subpopulation by rendering them targetable by standard cytotoxic compounds. Herein we show the anti-cancer properties of the polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively. The natural biofunctional fractions, singularly and in combination, reduced the cell viability of CRC stem cells (CR-CSCs) and synergized with 5-fluorouracil and oxaliplatin (FOX) chemotherapy. These phenomena were accompanied by a reduced S and G2/M phase of the cell cycle and upregulation of cell death-related genes. Notably, both phytoextracts in combination with FOX thwarted stemness features in CR-CSCs as demonstrated by the impaired clonogenic potential and decreased Wnt pathway activation. Extracts lowered the expression of CD44v6 and affected the expansion of metastatic CR-CSCs in patients refractory to chemotherapy. Together, this study highlights the importance of polymethoxyflavones and prenylflavonoids as natural remedies to aid oncological therapies

    Recapitulating thyroid cancer histotypes through engineering embryonic stem cells

    Get PDF
    Thyroid carcinoma (TC) is the most common malignancy of endocrine organs. The cell subpopulation in the lineage hierarchy that serves as cell of origin for the different TC histotypes is unknown. Human embryonic stem cells (hESCs) with appropriate in vitro stimulation undergo sequential differentiation into thyroid progenitor cells (TPCs-day 22), which maturate into thyrocytes (day 30). Here, we create follicular cell-derived TCs of all the different histotypes based on specific genomic alterations delivered by CRISPR-Cas9 in hESC-derived TPCs. Specifically, TPCs harboring BRAFV600E or NRASQ61R mutations generate papillary or follicular TC, respectively, whereas addition of TP53R248Q generate undifferentiated TCs. Of note, TCs arise by engineering TPCs, whereas mature thyrocytes have a very limited tumorigenic capacity. The same mutations result in teratocarcinomas when delivered in early differentiating hESCs. Tissue Inhibitor of Metalloproteinase 1 (TIMP1)/Matrix metallopeptidase 9 (MMP9)/Cluster of differentiation 44 (CD44) ternary complex, in cooperation with Kisspeptin receptor (KISS1R), is involved in TC initiation and progression. Increasing radioiodine uptake, KISS1R and TIMP1 targeting may represent a therapeutic adjuvant option for undifferentiated TCs

    Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis

    Get PDF
    Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers

    Colorectal cancer stem cells and cell death.

    No full text
    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem-like cells (CSCs), which survive conventional anticancer treatments, hanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool. © 2011 by the authors; licensee MDPI, Basel, Switzerland

    Colorectal cancer stem cells and cell death

    No full text
    Nowadays it is reported that, similarly to other solid tumors, colorectal cancer is sustained by a rare subset of cancer stem-like cells (CSCs), which survive conventional anticancer treatments, hanks to efficient mechanisms allowing escape from apoptosis, triggering tumor recurrence. To improve patient outcomes, conventional anticancer therapies have to be replaced with specific approaches targeting CSCs. In this review we provide strong support that BMP4 is an innovative therapeutic approach to prevent colon cancer growth increasing differentiation markers expression and apoptosis. Recent data suggest that in colorectal CSCs, protection from apoptosis is achieved by interleukin-4 (IL-4) autocrine production through upregulation of antiapoptotic mediators, including survivin. Consequently, IL-4 neutralization could deregulate survivin expression and localization inducing chemosensitivity of the colon CSCs pool. © 2011 by the authors; licensee MDPI, Basel, Switzerland
    corecore