34 research outputs found

    Effects of 3'deoxyadenosine and actinomycin D on RNA synthesis in toad bladder: analysis of response to aldosterone

    No full text
    Previous studies have shown that aldosterone increases transepithelial active Na+ transport after a latent period of about 60 min and incorporation of 3H-uridine into polyadenylated RNA (poly(A)(+)RNA) (putatively poly(A)(+)mRNA) as early as 30 min after aldosterone addition. To assess the physiological importance of this pathway, the effects of 3'deoxyadenosine and actinomycin D were compared in studies on the urinary bladder of the toad Bufo marinus. 3'deoxyadenosine (30 microgram/ml) only partially, though significantly, inhibited the aldosterone-dependent increase in Na+ transport measured as short-circuit current (scc). The incorporation of 3H-uridine into poly(A) (+)RNA was inhibited by 70 to 80%. In contrast, Actinomycin D (2 microgram/ml) totally inhibited the aldosterone-dependent increase in scc, and the incorporation of 3H-uridine into poly(A)(+)RNA by 68 to 75%. 3'deoxyadenosine or actinomycin D alone had no significant effects on baseline scc, while inhibiting poly(A)(+)RNA to the same extent. The differential effects of deoxyadenosine and actinomycin on aldosterone-dpendent Na+ transport may be related to their different sites of action on RNA synthesis: both drugs inhibited, to a similar extent, cytoplasmic poly(A)(+)mRNA: however, 3'deoxyadenosine, in contrast to Actinomycin D, failed to inhibit poly(A)(-)RNA, sedimenting between 4S and 18S (putatively poly(A)(-)mRNA). We conclude that the mineralocorticoid action of aldosterone during the first three hours depends on the synthesis of both poly(A)(+)mRNA and poly(A)(-)mRNA

    Thyroid hormone antagonizes an aldosterone-induced protein: a candidate mediator for the late mineralocorticoid response

    No full text
    In the urinary bladder of the toad Bufo marinus, the basal rate of synthesis of a number of proteins was modulated in a bidirectional way (i.e., induced or repressed) by aldosterone and by triiodothyronine (T3). Each hormone was therefore characterized by a distinct domain of response. When both hormones were added simultaneously, the two domains consistently overlapped at least for one protein, termed AIP-1, or aldosterone-induced protein 1 (Mr approximately 65 kilodaltons, pi = 6.7, as analyzed by two-dimension gel electrophoresis). The physiological role of AIP-1 is unknown, but could be related to the late mineralocorticoid response. In five experiments, T3 (60 nM, 18-hr incubation) consistently repressed AIP-1, while aldosterone-dependent sodium transport (late response) was significantly inhibited, as previously described. The repression of AIP-1 was also observed as early as 6 hr after aldosterone addition. In addition, sodium butyrate (3 mM), which was previously shown to also selectively inhibit the late mineralocorticoid response, was also able to repress AIP-1. Our results suggest that AIP-1 is one of the proteins involved in the mediation of the late mineralocorticoid response

    Thyroid hormone-aldosterone interaction on Na+ transport in toad bladder

    No full text
    Repeated administration of thyroxine (T4) in vivo (2 microgram/100 g body wt for 6 days) lowered by 2.3 times (P less than 0.025, df = 18) the basal rate of Na+ transport measured by the short-circuit current (SCC) in vitro in the urinary bladder of the toad (Bufo marinus). This difference was not accounted for by a change in the plasma aldosterone concentration. Moreover the response of the SCC to aldosterone in vitro was markedly inhibited in bladders from T4-treated animals (P less than 0.001, df = 18). These findings raised the possibility of a direct interaction between thyroid hormone and aldosterone in the target cell. The effects of L-triiodothyronine (T3) and aldosterone were examined in vitro. T3 alone (60 nM) had no significant effect on the base-line SCC (deltamuA = -14 +/- 11 (SE) muA per hemibladder; P greater than 0.3, n = 10). By contrast, T3 (60 nM) inhibited the response of the SCC to aldosterone from 6 to 8 h after its addition (deltamuA = -98 +/- 19 muA per hemibladder; P less than 0.001, n = 10). The inhibition by T3 was present at 6 nM (P less than 0.01, n = 10) and became not significant at 0.6 nM. T3 had no significant effect on base-line or aldosterone-stimulated H+ transport. Thyroid hormone might therefore regulate the late response of the SCC to aldosterone at the level of its target cell

    Binding and antimineralocorticoid activities of spirolactones in toad bladder

    No full text
    The role of the soluble pool (cytoplasmic or cytosolic) of [3H]-aldosterone binding sites in the toad bladder was assessed by the use of two spirolactones, prorenone and spironolactone as a reference drug. Prorenone fulfills all the criteria for a specific competitive antagonist of aldosterone for its effect on Na+ transport. Compared with spironolactone (Ki approximately equal to 1 microM), prorenone was about eightfold less potent (Ki approximately equal to 8 microM). Competition for [3H]aldosterone binding sites by spironolactone and prorenone revealed an order of potency (spironolactone greater than prorenone) that corresponded to their antagonist activities in the Na+ transport assay. There was a linear correlation between the effects of the two spirolactones on the aldosterone-stimulated Na+ transport and their ability to displace [3H]aldosterone from its binding sites in the soluble pool. Finally [3H]prorenone binding sites were detected in the soluble pool but an insignificant number of antagonist-receptor complexes were found associated with the nuclear pool. Our study indicates that the aldosterone binding sites of the soluble pool are indeed mineralocorticoid receptors, which are probably the first intracellular mediators leading to an increased Na+ reabsorption

    Plutonium from Global Fallout Recorded in an Ice Core from the Belukha Glacier, Siberian Altai

    No full text
    Ice cores from glaciers situated near anthropogenic sources of air pollution provide important archives of the emissions of species with short atmospheric lifetimes. Here we present the history of atmospheric Pu fallout reconstructed from an ice core from the Belukha glacier in the Siberian Altai. Fourteen ice core samples covering the time period 1941-1986 were selected for Pu analysis, chemically processed, and measured using accelerator mass spectrometry. The Pu concentration peaks in 1963, coinciding with the maximum of the nuclear weapons tests and in concordance with the3H activity concentration peak. The shapes of the239Pu and3H profiles reflect two main periods of atmospheric nuclear test activity: premoratorium testing before 1958 and postmoratorium testing in 1961 and 1962. Premoratorium tests contribute about 45% of the integrated Pu inventory. The average240Pu/239Pu isotopic ratio is 0.18 ± 0.05, indicating that a large majority of the Pu in the Belukha glacier originates from global stratospheric fallout rather than from direct tropospheric input

    Rapid continuous chemical methods for studies of nuclei far from stability

    No full text
    Fast continuous separation methods accomplished by combining a gas-jet recoil-transport system with a variety of chemical systems are described. Procedures for the isolation of individual elements from fission product mixtures with the multistage solvent extraction facility SISAK are presented. Thermochromatography in connection with a gas-jet has been studied as a technique for on-line separation of volatile fission halides. Based on chemical reactions in a gas-jet system itself separation procedures for tellurium, selenium and germanium from fission products have been worked out. All the continuous chemical methods can be performed within a few seconds. The application of such procedures to the investigation of nuclides far from the line of beta -stability is illustrated by a few examples. (16 refs)
    corecore