3,162 research outputs found

    New Roles for Collective Bargaining

    Get PDF
    [Excerpt] In this article I will focus on some behaviors that are role-specific. In particular, I will examine the unique contributions of agents, subject matter experts, leaders, and facilitators

    Does Where You Stand Depend on Where You Sit?

    Get PDF
    [Excerpt] In “New Roles for Collective Bargaining,” I concentrated on the bargainers—the agents who will be sitting at the table and, indirectly, their respective constituents. There are some additional considerations, less critical but not inconsequential, that may also improve your negotiations. These recommendations and innovations constitute more than a bin of odd parts; they all address environmental (structural or physical) accommodations to the strengths and limitations of human capability—the field of human factors engineering. After all, it is human beings (not principles, techniques, or structures) who fashioning solutions

    The influence of toxicity constraints in models of chemotherapeutic protocol escalation

    Get PDF
    The prospect of exploiting mathematical and computational models to gain insight into the influence of scheduling on cancer chemotherapeutic effectiveness is increasingly being considered. However, the question of whether such models are robust to the inclusion of additional tumour biology is relatively unexplored. In this paper, we consider a common strategy for improving protocol scheduling that has foundations in mathematical modelling, namely the concept of dose densification, whereby rest phases between drug administrations are reduced. To maintain a manageable scope in our studies, we focus on a single cell cycle phase-specific agent with uncomplicated pharmacokinetics, as motivated by 5-Fluorouracil-based adjuvant treatments of liver micrometastases. In particular, we explore predictions of the effectiveness of dose densification and other escalations of the protocol scheduling when the influence of toxicity constraints, cell cycle phase specificity and the evolution of drug resistance are all represented within the modelling. For our specific focus, we observe that the cell cycle and toxicity should not simply be neglected in modelling studies. Our explorations also reveal the prediction that dose densification is often, but not universally, effective. Furthermore, adjustments in the duration of drug administrations are predicted to be important, especially when dose densification in isolation does not yield improvements in protocol outcomes

    Mode doubling and tripling in reaction-diffusion patterns on growing domains: A piece-wise linear model

    Get PDF
    Reaction-diffusion equations are ubiquitous as models of biological pattern formation. In a recent paper [4] we have shown that incorporation of domain growth in a reaction-diffusion model generates a sequence of quasi-steady patterns and can provide a mechanism for increased reliability of pattern selection. In this paper we analyse the model to examine the transitions between patterns in the sequence. Introducing a piecewise linear approximation we find closed form approximate solutions for steady-state patterns by exploiting a small parameter, the ratio of diffusivities, in a singular perturbation expansion. We consider the existence of these steady-state solutions as a parameter related to the domain length is varied and predict the point at which the solution ceases to exist, which we identify with the onset of transition between patterns for the sequence generated on the growing domain. Applying these results to the model in one spatial dimension we are able to predict the mechanism and timing of transitions between quasi-steady patterns in the sequence. We also highlight a novel sequence behaviour, mode-tripling, which is a consequence of a symmetry in the reaction term of the reaction-diffusion system

    The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation

    Get PDF
    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction

    Power spectra methods for a stochastic description of diffusion on deterministically growing domains

    Get PDF
    A central challenge in developmental biology is understanding the creation of robust spatiotemporal heterogeneity. Generally, the mathematical treatments of biological systems have used continuum, mean-field hypotheses for their constituent parts, which ignores any sources of intrinsic stochastic effects. In this paper we consider a stochastic space-jump process as a description of diffusion, i.e., particles are able to undergo a random walk on a discretized domain. By developing analytical Fourier methods we are able to probe this probabilistic framework, which gives us insight into the patterning potential of diffusive systems. Further, an alternative description of domain growth is introduced, with which we are able to rigorously link the mean-field and stochastic descriptions. Finally, through combining these ideas, it is shown that such stochastic descriptions of diffusion on a deterministically growing domain are able to support the nucleation of states that are far removed from the deterministic mean-field steady state

    Influence of stochastic domain growth on pattern nucleation for diffusive systems with internal noise

    Get PDF
    Numerous mathematical models exploring the emergence of complexity within developmental biology incorporate diffusion as the dominant mechanism of transport. However, self-organizing paradigms can exhibit the biologically undesirable property of extensive sensitivity, as illustrated by the behavior of the French-flag model in response to intrinsic noise and Turing’s model when subjected to fluctuations in initial conditions. Domain growth is known to be a stabilizing factor for the latter, though the interaction of intrinsic noise and domain growth is underexplored, even in the simplest of biophysical settings. Previously, we developed analytical Fourier methods and a description of domain growth that allowed us to characterize the effects of deterministic domain growth on stochastically diffusing systems. In this paper we extend our analysis to encompass stochastically growing domains. This form of growth can be used only to link the meso- and macroscopic domains as the “box-splitting” form of growth on the microscopic scale has an ill-defined thermodynamic limit. The extension is achieved by allowing the simulated particles to undergo random walks on a discretized domain, while stochastically controlling the length of each discretized compartment. Due to the dependence of diffusion on the domain discretization, we find that the description of diffusion cannot be uniquely derived. We apply these analytical methods to two justified descriptions, where it is shown that, under certain conditions, diffusion is able to support a consistent inhomogeneous state that is far removed from the deterministic equilibrium, without additional kinetics. Finally, a logistically growing domain is considered. Not only does this show that we can deal with nonmonotonic descriptions of stochastic growth, but it is also seen that diffusion on a stationary domain produces different effects to diffusion on a domain that is stationary “on average.

    Stochastic reaction & diffusion on growing domains: understanding the breakdown of robust pattern formation

    Get PDF
    Many biological patterns, from population densities to animal coat markings, can be thought of as heterogeneous spatiotemporal distributions of mobile agents. Many mathematical models have been proposed to account for the emergence of this complexity, but, in general, they have consisted of deterministic systems of differential equations, which do not take into account the stochastic nature of population interactions. One particular, pertinent criticism of these deterministic systems is that the exhibited patterns can often be highly sensitive to changes in initial conditions, domain geometry, parameter values, etc. Due to this sensitivity, we seek to understand the effects of stochasticity and growth on paradigm biological patterning models. In this paper, we extend spatial Fourier analysis and growing domain mapping techniques to encompass stochastic Turing systems. Through this we find that the stochastic systems are able to realize much richer dynamics than their deterministic counterparts, in that patterns are able to exist outside the standard Turing parameter range. Further, it is seen that the inherent stochasticity in the reactions appears to be more important than the noise generated by growth, when considering which wave modes are excited. Finally, although growth is able to generate robust pattern sequences in the deterministic case, we see that stochastic effects destroy this mechanism for conferring robustness. However, through Fourier analysis we are able to suggest a reason behind this lack of robustness and identify possible mechanisms by which to reclaim it

    A mass action model of a fibroblast growth factor signaling pathway and its simplification

    Get PDF
    We consider a kinetic law of mass action model for Fibroblast Growth Factor (FGF) signaling, focusing on the induction of the RAS-MAP kinase pathway via GRB2 binding. Our biologically simple model suffers a combinatorial explosion in the number of differential equations required to simulate the system. In addition to numerically solving the full model, we show that it can be accurately simplified. This requires combining matched asymptotics, the quasi-steady state hypothesis, and the fact subsets of the equations decouple asymptotically. Both the full and simplified models reproduce the qualitative dynamics observed experimentally and in previous stochastic models. The simplified model also elucidates both the qualitative features of GRB2 binding and the complex relationship between SHP2 levels, the rate SHP2 induces dephosphorylation and levels of bound GRB2. In addition to providing insight into the important and redundant features of FGF signaling, such work further highlights the usefulness of numerous simplification techniques in the study of mass action models of signal transduction, as also illustrated recently by Borisov and co-workers (Borisov et al. in Biophys. J. 89, 951–66, 2005, Biosystems 83, 152–66, 2006; Kiyatkin et al. in J. Biol. Chem. 281, 19925–9938, 2006). These developments will facilitate the construction of tractable models of FGF signaling, incorporating further biological realism, such as spatial effects or realistic binding stoichiometries, despite a more severe combinatorial explosion associated with the latter

    Fluid mechanics of nodal flow due to embryonic primary cilia

    Get PDF
    Breaking of left–right symmetry is crucial in vertebrate development. The role of cilia-driven flow has been the subject of many recent publications, but the underlying mechanisms remain controversial. At approximately 8 days post-fertilization, after the establishment of the dorsal–ventral and anterior–posterior axes, a depressed structure is found on the ventral side of mouse embryos, termed the ventral node. Within the node, ‘whirling’ primary cilia, tilted towards the posterior, drive a flow implicated in the initial left–right signalling asymmetry. However, the underlying fluid mechanics have not been fully and correctly explained until recently and accurate characterization is required in determining how the flow triggers the downstream signalling cascades. Using the approximation of resistive force theory, we show how the flow is produced and calculate the optimal configuration to cause maximum flow, showing excellent agreement with in vitro measurements and numerical simulation, and paralleling recent analogue experiments. By calculating numerical solutions of the slender body theory equations, we present time-dependent physically based fluid dynamics simulations of particle pathlines in flows generated by large arrays of beating cilia, showing the far-field radial streamlines predicted by the theory
    • 

    corecore