223 research outputs found

    Exploration of the effects of classroom humidity levels on teachers’ respiratory symptoms

    Get PDF
    Previous studies indicate that teachers have higher asthma prevalence than other non-industrial worker groups. Schools frequently have trouble maintaining indoor relative humidity (RH) within the optimum range (30-50%) for reducing allergens and irritants. However, the potential relationship between classroom humidity and teachers’ health has not been explored. Thus, we examined the relationship between classroom humidity levels and respiratory symptoms among North Carolina teachers

    Magnetic Field Effects on the Head Structure of Protostellar Jets

    Get PDF
    We present the results of 3-D SPMHD numerical simulations of supermagnetosonic, overdense, radiatively cooling jets. Two initial magnetic configurations are considered: (i) a helical and (ii) a longitudinal field. We find that magnetic fields have important effects on the dynamics and structure of radiative cooling jets, especially at the head. The presence of a helical field suppresses the formation of the clumpy structure which is found to develop at the head of purely hydrodynamical jets. On the other hand, a cooling jet embedded in a longitudinal magnetic field retains clumpy morphology at its head. This fragmented structure resembles the knotty pattern commonly observed in HH objects behind the bow shocks of HH jets. This suggests that a strong (equipartition) helical magnetic field configuration is ruled out at the jet head. Therefore, if strong magnetic fields are present, they are probably predominantly longitudinal in those regions. In both magnetic configurations, we find that the confining pressure of the cocoon is able to excite short-wavelength MHD K-H pinch modes that drive low-amplitude internal shocks along the beam. These shocks are not strong however, and it likely that they could only play a secondary role in the formation of the bright knots observed in HH jets.Comment: 14 pages, 2 Gif figures, uses aasms4.sty. Also available on the web page http://www.iagusp.usp.br/preprints/preprint.html. To appear in The Astrophysical Journal Letter

    Possible Lingering Effects of Multiple Past Concussions

    Get PDF
    Background. The literature on lingering or “cumulative” effects of multiple concussions is mixed. The purpose of this study was to examine whether athletes with a history of three or more concussions perform more poorly on neuropsychological testing or report more subjective symptoms during a baseline, preseason evaluation. Hypothesis. Athletes reporting three or more past concussions would perform more poorly on preseason neurocognitive testing. Study Design. Case-control study. Methods. An archival database including 786 male athletes who underwent preseason testing with a computerized battery (ImPACT) was used to select the participants. Twenty-six athletes, between the ages of 17 and 22 with a history of three or more concussions, were identified. Athletes with no history of concussion were matched, in a case-control fashion, on age, education, self-reported ADHD, school, sport, and, when possible, playing position and self-reported academic problems. Results. The two groups were compared on the four neuropsychological composite scores from ImPACT using multivariate analysis of variance followed by univariate ANOVAs. MANOVA revealed no overall significant effect. Exploratory ANOVAs were conducted using Verbal Memory, Visual Memory, Reaction Time, Processing Speed, and Postconcussion Scale composite scores as dependent variables. There was a significant effect for only the Verbal Memory composite. Conclusions. Although inconclusive, the results suggest that some athletes with multiple concussions could have lingering memory deficits

    The Chandra ACIS Survey of M33 (ChASeM33): The final source catalog

    Full text link
    This study presents the final source catalog of the Chandra ACIS Survey of M33 (ChASeM33). With a total exposure time of 1.4 Ms, ChASeM33 covers ~70% of the D25 isophote (R\approx4kpc) of M33 and provides the deepest, most complete, and detailed look at a spiral galaxy in X-rays. The source catalog includes 662 sources, reaches a limiting unabsorbed luminosity of ~2.4x10^(34) erg/s in the 0.35-8.0keV energy band, and contains source positions, source net counts, fluxes and significances in several energy bands, and information on source variability. The analysis challenges posed by ChASeM33 and the techniques adopted to address these challenges are discussed. To constrain the nature of the detected X-ray source, hardness ratios were constructed and spectra were fit for 254 sources, followup MMT spectra of 116 sources were acquired, and cross-correlations with previous X-ray catalogs and other multi-wavelength data were generated. Based on this effort, 183 of the 662 ChASeM33 sources could be identified. Finally, the luminosity function for the detected point sources as well as the one for the X-ray binaries in M33 is presented. The luminosity functions in the soft band (0.5-2.0 keV) and the hard band (2.0-8.0 keV) have a limiting luminosity at the 90% completeness limit of 4.0x10^(34) erg/s and 1.6x10^(35) erg/s (for D=817kpc), respectively, which is significantly lower than what was reported by previous X-ray binary population studies in galaxies more distant than M33. The resulting distribution is consistent with a dominant population of high mass X-ray binaries as would be expected for M33.Comment: 186 pages, 11 figures, 10 tables. Accepted for publication in the ApJS. For a high resolution version of the paper, see http://hea-www.harvard.edu/vlp_m33_public

    High-resolution x-ray telescopes

    Full text link
    High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellar-mass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.Comment: 19 pages, 11 figures, SPIE Conference 7803 "Adaptive X-ray Optics", part of SPIE Optics+Photonics 2010, San Diego CA, 2010 August 2-
    corecore