24 research outputs found
New insights in the pathogenesis of non-alcoholic fatty liver disease
PURPOSE OF REVIEW: The hallmark of non-alcoholic fatty liver disease is hepatic steatosis. This is mostly a benign condition, but for largely unknown reasons it progresses to liver fibrosis, cirrhosis, and ultimately hepatocellular carcinoma in about 10% of patients. In this review we discuss recent progress in the understanding of the etiology of non-alcoholic fatty liver disease. RECENT FINDINGS: In the last few years many connections between carbohydrate and triglyceride homeostasis, as well as inflammation, have surfaced. These seemingly unrelated metabolic pathways are linked by the action of diverse nuclear receptors. Many intermediates in lipid metabolism were shown to be activating ligands of these receptors, explaining the dysregulation of intermediary metabolism and induction of insulin resistance by a lipid overload. In addition to invoking a derangement in nuclear receptor regulation, excessive hepatic lipid influx may have direct metabolic consequences, particularly on mitochondrial function. SUMMARY: Non-alcoholic fatty liver disease is a multifactorial disease. Many aspects of the disease and the links to inflammation can be understood when the multiple functions of the regulating nuclear receptors are taken into account. Many of these nuclear receptors seem attractive targets to develop therapy for non-alcoholic fatty liver disease and the closely related metabolic syndrom
Mechanisms of glucocorticoid signalling
It has become increasingly clear that glucocorticoid signalling not only comprises the binding of the glucocorticoid receptor (GR) to its response element (GRE), but also involves indirect regulation glucocorticoid-responsive genes by regulating or interacting with other transcription factors. In addition, they can directly regulate gene expression by binding to negative glucocorticoid response elements (nGREs), to simple GREs, to GREs, or to GREs and GRE half sites (GRE1/2s) that are part of a regulatory unit. A response unit allows a higher level of glucocorticoid induction than simple GREs and, in addition, allows the integration of tissue-specific information with the glucocorticoid response. Presumably, the complexity of such a glucocorticoid response unit (GRU) depends on the number of pathways that integrate at this unit. Because GRUs are often located at distant sites relative to the transcription-start site, the GRU has to find a way to communicate with the basal-transcription machinery. We propose that the activating signal of a distal enhancer can be relayed onto the transcription-initiation complex by coupling elements located proximal to the promote
Hepatocyte-specific interplay of transcription factors at the far-upstream enhancer of the carbamoylphosphate synthetase gene upon glucocorticoid induction.
International audienceCarbamoylphosphate synthetase-I is the flux-determining enzyme of the ornithine cycle, and neutralizes toxic ammonia by converting it to urea. An 80 bp glucocorticoid response unit located 6.3 kb upstream of the transcription start site mediates hormone responsiveness and liver-specific expression of carbamoylphosphate synthetase-I. The glucocorticoid response unit consists of response elements for the glucocorticoid receptor, forkhead box A, CCAAT/enhancer-binding protein, and an unidentified protein. With only four transcription factor response elements, the carbamoylphosphate synthetase-I glucocorticoid response unit is a relatively simple unit. The relationship between carbamoylphosphate synthetase-I expression and in vivo occupancy of the response elements was examined by comparing a carbamoylphosphate synthetase-I-expressing hepatoma cell line with a carbamoylphosphate synthetase-I-negative fibroblast cell line. DNaseI hypersensitivity assays revealed an open chromatin configuration of the carbamoylphosphate synthetase-I enhancer in hepatoma cells only. In vivo footprinting assays showed that the accessory transcription factors of the glucocorticoid response unit bound to their response elements in carbamoylphosphate synthetase-I-positive cells, irrespective of whether carbamoylphosphate synthetase-I expression was induced with hormones. In contrast, the binding of glucocorticoid receptor to the carbamoylphosphate synthetase-I glucocorticoid response unit was dependent on treatment of the cells with glucocorticoids. Only forkhead box A was exclusively present in hepatoma cells, and therefore appears to be an important determinant of the observed tissue specificity of carbamoylphosphate synthetase-I expression. As the glucocorticoid receptor is the only DNA-binding protein specifically recruited to the glucocorticoid response unit upon stimulation by glucocorticoids, it is likely to be directly responsible for the transcriptional activation mediated by the glucocorticoid response unit
Lipotoxicity and steatohepatitis in an overfed mouse model for non-alcoholic fatty liver disease
The major risk factors for non-alcoholic fatty liver disease (NAFLD) are obesity, insulin resistance and dyslipidemia. The cause for progression from the steatosis stage to the inflammatory condition (non-alcoholic steatohepatitis (NASH)) remains elusive at present. Aim of this study was to test whether the different stages of NAFLD as well as the associated metabolic abnormalities can be recreated in time in an overfed mouse model and study the mechanisms underlying the transition from steatosis to NASH. Male C57BI/6J mice were subjected to continuous intragastric overfeeding with a high-fat liquid diet (HFLD) for different time periods. Mice fed a solid high-fat diet (HFD) ad libitum served as controls. Liver histology and metabolic characteristics of liver, white adipose tisue (WAT) and plasma were studied. Both HFD-fed and HFLD-overfed mice initially developed liver steatosis, but only the latter progressed in time to NASH. NASH coincided with obesity, hyperinsulinemia, loss of liver glycogen and hepatic endoplasmatic reticulum stress. Peroxisome proliferator-activated receptor gamma (Ppary), fibroblast growth factor 21 (Fgf21), fatty acid binding protein (Fabp) and fatty acid translocase (CD36) were induced exclusively in the livers of the HFLD-overfed mice. Inflammation, reduced adiponectin expression and altered expression of genes that influence adipogenic capacity were only observed in WAT of HFLD-overfed mice. In conclusion: this dietary mouse model displays the different stages and the metabolic settings often found in human NAFLD. Lipotoxicity due to compromised adipose tissue function is likely associated with the progression to NASH, but whether this is cause or consequence remains to be established. (C) 2011 Elsevier B.V. All rights reserve
FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model
It has been established that bile salts play a role in the regulation of hepatic lipid metabolism. Accordingly, overt signs of steatosis have been observed in mice with reduced bile salt synthesis. The aim of this study was to identify the mechanism of hepatic steatosis in mice with bile salt deficiency due to a liver specific disruption of cytochrome P450 reductase. In this study mice lacking hepatic cytochrome P450 reductase (Hrn) or wild type (WT) mice were fed a diet supplemented with or without either 0.1% cholic acid (CA) or 0.025% obeticholic acid, a specific FXR-agonist Feeding a CA-supplemented diet resulted in a significant decrease of plasma ALT in Hrn mice. Histologically, hepatic steatosis ameliorated after CA feeding and this was confirmed by reduced hepatic triglyceride content (115.5 +/- 7.3 mg/g liver and 47.9 +/- 4.6 mg/g liver in control- and CA-fed Hrn mice, respectively). The target genes of FXR-signaling were restored to normal levels in Hrn mice when fed cholic acid. VLDL secretion in both control and CA-fed Hrn mice was reduced by 25% compared to that in WT mice. In order to gain insight in the mechanism behind these bile salt effects, the FXR agonist also was administered for 3 weeks. This resulted in a similar decrease in liver triglycerides, indicating that the effect seen in bile salt fed Hrn animals is FXR dependent In conclusion, steatosis in Hrn mice is ameliorated when mice are fed bile salts. This effect is FXR dependent. Triglyceride accumulation in Hrn liver may partly involve impaired VLDL secretion. (c) 2014 Elsevier B.V. All rights reserve