2 research outputs found
AI is a viable alternative to high throughput screening: a 318-target study
: High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
Disrupting iron homeostasis can potentiate colistin activity and overcome colistin resistance mechanisms in Gram-Negative Bacteria
Abstract Acinetobacter baumannii is a Gram-negative priority pathogen that can readily overcome antibiotic treatment through a range of intrinsic and acquired resistance mechanisms. Treatment of carbapenem-resistant A. baumannii largely relies on the use of colistin in cases where other treatment options have been exhausted. However, the emergence of resistance against this last-line drug has significantly increased amongst clinical strains. In this study, we identify the phytochemical kaempferol as a potentiator of colistin activity. When administered singularly, kaempferol has no effect on growth but does impact biofilm formation. Nonetheless, co-administration of kaempferol with sub-inhibitory concentrations of colistin exposes bacteria to a metabolic Achilles heel, whereby kaempferol-induced dysregulation of iron homeostasis leads to bacterial killing. We demonstrate that this effect is due to the disruption of Fenton’s reaction, and therefore to a lethal build-up of toxic reactive oxygen species in the cell. Furthermore, we show that this vulnerability can be exploited to overcome both intrinsic and acquired colistin resistance in clinical strains of A. baumannii and E. coli in vitro and in the Galleria mellonella model of infection. Overall, our findings provide a proof-of-principle demonstration that targeting iron homeostasis is a promising strategy for enhancing the efficacy of colistin and overcoming colistin-resistant infections