16 research outputs found

    Atomic Force Microscopy: a tool to unveil the mystery of biological systems

    Get PDF
    This article focuses on one of the promising and emerging nanolevel imaging techniques: Atomic Force Microscopy (AFM). In recent studies, AFM has been extensively used to understand intricate biological phenomena like prokaryotic and eukaryotic genome organization, different DNA transaction activities, protein chaperoning and also protein-nucleic acid organization in viruses

    Human positive coactivator 4 controls heterochromatinization and silencing of neural gene expression by interacting with REST/NRSF and CoREST

    No full text
    The highly abundant, multifunctional transcriptional positive coactivator 4 (PC4) plays important roles in transcription, replication and DNA repair. Our recent work showed that PC4 is a bona fide non-histone component of chromatin. Here, we report that knockdown of PC4 dramatically alters heterochromatin organization of the genome, accompanied by increased H3K9 (histone H3 at lysine residue 9)/14 acetylation, H3K4 trimethylation and reduction in the level of H3K9 dimethylation. These posttranslational modifications of histone H3 result in overexpression of normally silenced genes (e.g., neural genes) located in heterochromatin. The results of ChIP (chromatin immunoprecipitation) and re-ChIP assays showed that overexpression of a neuronal-specific gene is accompanied by histone hyperacetylation. We further show that PC4 interacts with heterochromatin protein 1α , REST/NRSF (RE1-silencing transcription factor/neuron-restrictive silencer factor) and CoREST to establish the repressed state of neural genes in nonneuronal cells. Thus, PC4 plays a crucial role in maintaining a dynamic chromatin state and heterochromatin gene silencing

    A PreSTIGEous use of LncRNAs to predict enhancers

    No full text

    Harnessing the Immune System with Cancer Vaccines: From Prevention to Therapeutics

    Get PDF
    Prophylactic vaccination against infectious diseases is one of the most successful public health measures of our lifetime. More recently, therapeutic vaccination against established diseases such as cancer has proven to be more challenging. In the host, cancer cells evade immunologic regulation by multiple means, including altering the antigens expressed on their cell surface or recruiting inflammatory cells that repress immune surveillance. Nevertheless, recent clinical data suggest that two classes of antigens show efficacy for the development of anticancer vaccines: tumor-associated antigens and neoantigens. In addition, many different vaccines derived from antigens based on cellular, peptide/protein, and genomic components are in development to establish their efficacy in cancer therapy. Some vaccines have shown promising results, which may lead to favorable outcomes when combined with standard therapeutic approaches. This review provides an overview of the innate and adaptive immune systems, their interactions with cancer cells, and the development of various different vaccines for use in anticancer therapeutics

    Curcumin-glucoside, A Novel Synthetic Derivative of Curcumin, Inhibits alpha-Synuclein Oligomer Formation: Relevance to Parkinson's Disease

    No full text
    alpha-Synuclein aggregation is centrally implicated in Parkinson's disease (PD). It involves multi-step nucleated polymerization process via the formation of dimers, soluble toxic oligomers and insoluble fibrils. In the present study, we synthesized a novel compound viz., Curcumin-glucoside (Curc-gluc), a modified form of curcumin and studied its anti-aggregating potential with alpha-synuclein. Under aggregating conditions in vitro, Curc-gluc prevents oligomer formation as well as inhibits fibril formation indicating favorable stoichiometry for inhibition. The binding efficacies of Curc-gluc to both alpha-synuclein monomeric and oligomeric forms were characterized by micro-calorimetry. It was observed that titration of Curc-gluc with alpha-synuclein monomer yielded very low heat values with low binding while, in case of oligomers, Curc-gluc showed significant binding. Addition of Curc-gluc inhibited aggregation in a dose-dependent manner and enhanced alpha-synuclein solubility, which propose that Curc-gluc solubilizes the oligomeric form by disintegrating preformed fibrils and this is a novel observation. Overall, the data suggest that Curc-gluc binds to alpha-synuclein oligomeric form and prevents further fibrillization of alpha-synuclein; this might aid the development of disease modifying agents in preventing or treating PD
    corecore