2 research outputs found

    Design Optimization of DR3AM Vapor Polishing Device for ABS 3D-Printed Parts

    Get PDF
    3D printing is an additive manufacturing method that turns digital design into an actual product. A 3D-printed part sometimes requires post-processing to enhance its physical and mechanical properties. Acetone vapor polishing is one of those techniques which is highly beneficial in smoothing ABS 3D-printed parts. Previously, an acetone vapor polishing device has been developed which uses a mist maker. However, for a more efficient polishing method, an optimized vapor polishing device using heat has been fabricated in this study. To assess the efficiency of this device, the researchers test the dimensional accuracy, surface roughness, tensile strength, and impact strength of polished and unpolished ABS 3D-printed specimens. The findings showed that the surface smoothness of the polished cube specimens did not significantly alter its physical geometry. The tensile test reveals that the overall elasticity of the polished tensile specimen has increased significantly while the impact test also shows that the polished specimens have the capacity to sustain a resistive impact from a swinging pendulum. Thus, all testing procedures indicated that post-processing using the optimized vapor polishing device has improved the overall physical and mechanical properties of the polished specimens

    Post-Processing of 3D-Printed Polymers

    Full text link
    Additive manufacturing, commonly known as 3D printing, is an advancement over traditional formative manufacturing methods. It can increase efficiency in manufacturing operations highlighting advantages such as rapid prototyping, reduction of waste, reduction of manufacturing time and cost, and increased flexibility in a production setting. The additive manufacturing (AM) process consists of five steps: (1) preparation of 3D models for printing (designing the part/object), (2) conversion to STL file, (3) slicing and setting of 3D printing parameters, (4) actual printing, and (5) finishing/post-processing methods. Very often, the 3D printed part is sufficient by itself without further post-printing processing. However, many applications still require some forms of post-processing, especially those for industrial applications. This review focuses on the importance of different finishing/post-processing methods for 3D-printed polymers. Different 3D printing technologies and materials are considered in presenting the authors’ perspective. The advantages and disadvantages of using these methods are also discussed together with the cost and time in doing the post-processing activities. Lastly, this review also includes discussions on the enhancement of properties such as electrical, mechanical, and chemical, and other characteristics such as geometrical precision, durability, surface properties, and aesthetic value with post-printing processing. Future perspectives is also provided towards the end of this review
    corecore