39 research outputs found

    The Seismic Experiment for Interior Structure (SEIS): Experiment Data Distribution

    Get PDF
    The six sensors of SEIS (The Seismic Experiment for Interior Structure) [- one of three primary instruments on NASA's Mars Lander Insight] cover a broad range of the seismic bandwidth, from 0.01 hertz to 50 hertz, with possible extension to longer periods. Data are transmitted in the form of three continuous VBB (Very Broad-Band) components at 2 samples per second (sps), an estimation of the short period (SP) energy content from the SP at 1 sps, and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams are augmented by requested event data with sample rates from 20 to 100 sps. SEIS data products are downlinked from the spacecraft in raw CCSDS (Consultative Committee for Space Data Systems) packets and converted to both the Standard for the Exchange of Earthquake Data (SEED) format files and ASCII tables (GeoCSV) for analysis and archiving. Metadata are available in dataless SEED and StionXML. Time series data (waveforms) are available in miniseed and GeoCSV. Data are distributed according to FDSN (Federation of Digital Seismograph Networks - http://www.fdsn.org) formats and interfaces. Wind, pressure and temperature data from the Auxiliary Payload Sensor Suite (APSS) will also be available in SEED format, and can be used for decorrelation and diagnostic purposes on SEIS

    Modelling survival : exposure pattern, species sensitivity and uncertainty

    Get PDF
    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans

    The seismicity of Mars

    Get PDF
    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018 and fully deployed its seismometer by the end of February 2019. The mission aims to detect, characterize and locate seismic activity on Mars, and to further constrain the internal structure, composition and dynamics of the planet. Here, we present seismometer data recorded until 30 September 2019, which reveal that Mars is seismically active. We identify 174 marsquakes, comprising two distinct populations: 150 small-magnitude, high-frequency events with waves propagating at crustal depths and 24 low-frequency, subcrustal events of magnitude Mw 3–4 with waves propagating at various depths in the mantle. These marsquakes have spectral characteristics similar to the seismicity observed on the Earth and Moon. We determine that two of the largest detected marsquakes were located near the Cerberus Fossae fracture system. From the recorded seismicity, we constrain attenuation in the crust and mantle, and find indications of a potential low-S-wave-velocity layer in the upper mantle. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.We acknowledge NASA, CNES and its partner agencies and institutions (UKSA, SSO, DLR, JPL, IPGP-CNRS, ETHZ, IC and MPS-MPG) and the flight operations team at JPL, SISMOC, MSDS, IRIS-DMC and PDS for providing SEIS data. The Swiss co-authors were jointly funded by (1) the Swiss National Science Foundation and French Agence Nationale de la Recherche (SNF-ANR project 157133 ‘Seismology on Mars’), (2) the Swiss National Science Foundation (SNF project 172508 ‘Mapping the internal structure of Mars’), (3) the Swiss State Secretariat for Education, Research and Innovation (SEFRI project ‘MarsQuake Service-Preparatory Phase’) and (4) ETH Research grant no. ETH-06 17-02. Additional support came from the Swiss National Supercomputing Centre (CSCS) under project ID s922. The Swiss contribution in the implementation of the SEIS electronics was made possible by funding from the federal Swiss Space Office (SSO) and contractual and technical support from the ESA-PRODEX office. The French Team acknowledge the French Space Agency CNES, which has supported and funded all SEIS-related contracts and CNES employees, as well as CNRS and the French team universities for personal and infrastructure support. Additional support was provided by ANR (ANR-14-CE36-0012-02 and ANR-19-CE31-0008-08) and, for the IPGP team, by the UnivEarthS Labex programme (ANR-10-LABX-0023), IDEX Sorbonne Paris CitĂ© (ANR-11-IDEX-0005-0). SEIS-SP development and delivery were funded by the UK Space Agency. A portion of the work was carried out at the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The MPS SEIS team acknowledges funding for development of the SEIS leveling system by the DLR German Space Agency. We thank gempa GmbH for software development related to the MQS tools. This paper is InSight contribution number 102.Peer reviewe

    SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

    Get PDF
    By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∌ 2500 at 1 Hz and ∌ 200 000 at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw ∌ 3 at 40◩ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution

    How do interactive maternal traits and environmental factors determine offspring size in

    Full text link
    In this study, we investigated variation in offspring size (OS) of Daphnia magna in relation to multiple maternal traits and environmental variables. Data originated from laboratory experiments conducted at different feeding scenarios. The mother daphnids had different life-history traits and were reared under various feeding and density conditions. OS showed linear relationships with maternal traits, varying positively with maternal body size, age and brood number, and negatively with brood size and with the amount of ingested carbon. OS increased exponentially with crowding. Using stepwise multiple regression analysis, we developed an empirical model for the OS variation with the relevant maternal and environmental variables. Density dependence was considered by multiplying the resulting model by a density-effect function. We found that the ingested carbon and the maternal body size were the strongest determinants of the observed variation in the OS, whereas the brood size had the least impact on OS. Additionally, the brood number had no significant effect in determining the variability in the OS. The validity of the multivariate model was tested against an independent dataset. The model accurately predicted the OS despite several genetic and environmental differences compared with the data used for parameterization.We develop an empirical model addressing interactive maternal and environmental effects on offspring size (OS) in Daphnia magna. OS significantly varied with multiple factors. Models addressing ecological questions regarding Daphnia populations should consider this natural variability in OS

    Infection VIH revelee par un abces unilateral du muscle psoas

    Full text link
    No Abstract. African Journal of Urology Vol. 13 (2) 2007: pp. 174-17
    corecore