490 research outputs found

    Cavity Control of a Single-Electron Quantum Cyclotron:\\Measuring the Electron Magnetic Moment

    Full text link
    Measurements with a one-electron quantum cyclotron determine the electron magnetic moment, given by g/2=1.001 159 652 180 73 (28) [0.28 ppt]g/2 = 1.001\,159\,652\,180\,73\,(28)\,[0.28~\textrm{ppt}], and the fine structure constant, α−1=137.035 999 084 (51) [0.37 ppb]\alpha^{-1}=137.035\,999\,084\,(51)\,[0.37~\textrm{ppb}]. Brief announcements of these measurements are supplemented here with a more complete description of the one-electron quantum cyclotron and the new measurement methods, a discussion of the cavity control of the radiation field, a summary of the analysis of the measurements, and a fuller discussion of the uncertainties

    Direct Measurement of the Proton Magnetic Moment

    Full text link
    The proton magnetic moment in nuclear magnetons is measured to be μp/μN≡g/2=2.792 846±0.000 007\mu_p/\mu_N \equiv g/2 = 2.792\,846 \pm 0.000\,007, a 2.5 ppm (parts per million) uncertainty. The direct determination, using a single proton in a Penning trap, demonstrates the first method that should work as well with an antiproton as with a proton. This opens the way to measuring the antiproton magnetic moment (whose uncertainty has essentially not been reduced for 20 years) at least 10310^3 times more precisely

    The Production and Study of Cold Antihydrogen

    Get PDF
    ATRAP 2009 Progress and 2010 Plan

    Optimized Planar Penning Traps for Quantum Information Studies

    Full text link
    A one-electron qubit would offer a new option for quantum information science, including the possibility of extremely long coherence times. One-quantum cyclotron transitions and spin flips have been observed for a single electron in a cylindrical Penning trap. However, an electron suspended in a planar Penning trap is a more promising building block for the array of coupled qubits needed for quantum information studies. The optimized design configurations identified here promise to make it possible to realize the elusive goal of one trapped electron in a planar Penning trap for the first time - a substantial step toward a one-electron qubit

    Gaseous 3^3He Nuclear Magnetic Resonance Probe for Cryogenic Environments

    Full text link
    Normal nuclear magnetic resonance (NMR) probes cannot be used to make high frequency resolution measurements in a cryogenic environment because they lose their frequency resolution when the liquid sample in the probe freezes. A gaseous 3^3He NMR probe, designed and constructed to work naturally in such cryogenic environments, is demonstrated at 4.2 K and 5.3 Tesla to have a frequency resolution better than 0.4 part per billion. As a demonstration of its usefulness, the cryogenic probe is used to shim a superconducting solenoid with a cryogenic interior to produce a magnetic field with a high spatial homogeneity, and to measure the magnetic field stability.Comment: 9 pages, 11 figure

    Resolving an Individual One-Proton Spin Flip to Determine a Proton Spin State

    Full text link
    Previous measurements with a single trapped proton or antiproton detected spin resonance from the increased scatter of frequency measurements caused by many spin flips. Here a measured correlation confirms that individual spin transitions and states are detected instead. The high fidelity suggests that it may be possible to use quantum jump spectroscopy to measure the p and \pbar magnetic moments much more precisely.Comment: 4 pages, 7 figure

    Towards an Improved Test of the Standard Model's Most Precise Prediction

    Full text link
    The electron and positron magnetic moments are the most precise prediction of the standard model of particle physics. The most accurate measurement of a property of an elementary particle has been made to test this result. A new experimental method is now being employed in an attempt to improve the measurement accuracy by an order of magnitude. Positrons from a "student source" now suffice for the experiment. Progress toward a new measurement is summarized

    Single-Particle Self-Excited Oscillator

    Get PDF
    Electronic feedback is used to self-excite the axial oscillation of a single electron in a Penning trap. Large, stable, easily detected oscillations arise even in an anharmonic potential. Amplitudes are controlled by adjusting the feedback gain, and frequencies can be made nearly independent of amplitude fluctuations. Quantum jump spectroscopy of a perpendicular cyclotron motion reveals the absolute temperature and amplitude of the self-excited oscillation. The possibility to quickly measure parts per billion frequency shifts could open the way to improved measurements of e-, e+, p, and [overline p] magnetic moments

    High Efficiency Positron Accumulation for High-Precision Measurements

    Full text link
    Positrons are accumulated within a Penning trap designed to make more precise measurements of the positron and electron magnetic moments. The retractable radioactive source used is weak enough to require no license for handling radioactive material and the radiation dosage one meter from the source gives an exposure several times smaller than the average radiation dose on the earth's surface. The 100 mK trap is mechanically aligned with the 4.2 K superconducting solenoid that produces a 6 tesla magnetic trapping field with a direct mechanical coupling.Comment: 7 pages, 9 figure
    • …
    corecore