4,040 research outputs found
Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems
In this paper we present a self-contained macroscopic description of
diffusive systems interacting with boundary reservoirs and under the action of
external fields. The approach is based on simple postulates which are suggested
by a wide class of microscopic stochastic models where they are satisfied. The
description however does not refer in any way to an underlying microscopic
dynamics: the only input required are transport coefficients as functions of
thermodynamic variables, which are experimentally accessible. The basic
postulates are local equilibrium which allows a hydrodynamic description of the
evolution, the Einstein relation among the transport coefficients, and a
variational principle defining the out of equilibrium free energy. Associated
to the variational principle there is a Hamilton-Jacobi equation satisfied by
the free energy, very useful for concrete calculations. Correlations over a
macroscopic scale are, in our scheme, a generic property of nonequilibrium
states. Correlation functions of any order can be calculated from the free
energy functional which is generically a non local functional of thermodynamic
variables. Special attention is given to the notion of equilibrium state from
the standpoint of nonequilibrium.Comment: 21 page
Clausius inequality and optimality of quasi static transformations for nonequilibrium stationary states
Nonequilibrium stationary states of thermodynamic systems dissipate a
positive amount of energy per unit of time. If we consider transformations of
such states that are realized by letting the driving depend on time, the amount
of energy dissipated in an unbounded time window becomes then infinite.
Following the general proposal by Oono and Paniconi and using results of the
macroscopic fluctuation theory, we give a natural definition of a renormalized
work performed along any given transformation. We then show that the
renormalized work satisfies a Clausius inequality and prove that equality is
achieved for very slow transformations, that is in the quasi static limit. We
finally connect the renormalized work to the quasi potential of the macroscopic
fluctuation theory, that gives the probability of fluctuations in the
stationary nonequilibrium ensemble
A perturbative approach to the Bak-Sneppen Model
We study the Bak-Sneppen model in the probabilistic framework of the Run Time
Statistics (RTS). This model has attracted a large interest for its simplicity
being a prototype for the whole class of models showing Self-Organized
Criticality. The dynamics is characterized by a self-organization of almost all
the species fitnesses above a non-trivial threshold value, and by a lack of
spatial and temporal characteristic scales. This results in {\em avalanches} of
activity power law distributed. In this letter we use the RTS approach to
compute the value of , the value of the avalanche exponent and the
asymptotic distribution of minimal fitnesses.Comment: 4 pages, 3 figures, to be published on Physical Review Letter
A perturbation theory for large deviation functionals in fluctuating hydrodynamics
We study a large deviation functional of density fluctuation by analyzing
stochastic non-linear diffusion equations driven by the difference between the
densities fixed at the boundaries. By using a fundamental equality that yields
the fluctuation theorem, we first relate the large deviation functional with a
minimization problem. We then develop a perturbation method for solving the
problem. In particular, by performing an expansion with respect to the average
current, we derive the lowest order expression for the deviation from the local
equilibrium part. This expression implies that the deviation is written as the
space-time integration of the excess entropy production rate during the most
probable process of generating the fluctuation that corresponds to the argument
of the large deviation functional.Comment: 12page
Surface Hardening and Self-Organized Fractality Through Etching of Random Solids
When a finite volume of etching solution is in contact with a disordered
solid, complex dynamics of the solid-solution interface develop. If the etchant
is consumed in the chemical reaction, the dynamics stop spontaneously on a
self-similar fractal surface. As only the weakest sites are corroded, the solid
surface gets progressively harder and harder. At the same time it becomes
rougher and rougher uncovering the critical spatial correlations typical of
percolation. From this, the chemical process reveals the latent percolation
criticality hidden in any random system. Recently, a simple minimal model has
been introduced by Sapoval et al. to describe this phenomenon. Through analytic
and numerical study, we obtain a detailed description of the process. The time
evolution of the solution corroding power and of the distribution of resistance
of surface sites is studied in detail. This study explains the progressive
hardening of the solid surface. Finally, this dynamical model appears to belong
to the universality class of Gra dient Percolation.Comment: 14 pages, 15 figures (1457 Kb
Percolation in real Wildfires
This paper focuses on the statistical properties of wild-land fires and, in
particular, investigates if spread dynamics relates to simple invasion model.
The fractal dimension and lacunarity of three fire scars classified from
satellite imagery are analysed. Results indicate that the burned clusters
behave similarly to percolation clusters on boundaries and look more dense in
their core. We show that Dynamical Percolation reproduces this behaviour and
can help to describe the fire evolution. By mapping fire dynamics onto the
percolation models the strategies for fire control might be improved.Comment: 8 pages, 3 figures, epl sytle (epl.cls included
Stochastic interacting particle systems out of equilibrium
This paper provides an introduction to some stochastic models of lattice
gases out of equilibrium and a discussion of results of various kinds obtained
in recent years. Although these models are different in their microscopic
features, a unified picture is emerging at the macroscopic level, applicable,
in our view, to real phenomena where diffusion is the dominating physical
mechanism. We rely mainly on an approach developed by the authors based on the
study of dynamical large fluctuations in stationary states of open systems. The
outcome of this approach is a theory connecting the non equilibrium
thermodynamics to the transport coefficients via a variational principle. This
leads ultimately to a functional derivative equation of Hamilton-Jacobi type
for the non equilibrium free energy in which local thermodynamic variables are
the independent arguments. In the first part of the paper we give a detailed
introduction to the microscopic dynamics considered, while the second part,
devoted to the macroscopic properties, illustrates many consequences of the
Hamilton-Jacobi equation. In both parts several novelties are included.Comment: 36 page
Modeling Heterogeneous Materials via Two-Point Correlation Functions: II. Algorithmic Details and Applications
In the first part of this series of two papers, we proposed a theoretical
formalism that enables one to model and categorize heterogeneous materials
(media) via two-point correlation functions S2 and introduced an efficient
heterogeneous-medium (re)construction algorithm called the "lattice-point"
algorithm. Here we discuss the algorithmic details of the lattice-point
procedure and an algorithm modification using surface optimization to further
speed up the (re)construction process. The importance of the error tolerance,
which indicates to what accuracy the media are (re)constructed, is also
emphasized and discussed. We apply the algorithm to generate three-dimensional
digitized realizations of a Fontainebleau sandstone and a boron
carbide/aluminum composite from the two- dimensional tomographic images of
their slices through the materials. To ascertain whether the information
contained in S2 is sufficient to capture the salient structural features, we
compute the two-point cluster functions of the media, which are superior
signatures of the micro-structure because they incorporate the connectedness
information. We also study the reconstruction of a binary laser-speckle pattern
in two dimensions, in which the algorithm fails to reproduce the pattern
accurately. We conclude that in general reconstructions using S2 only work well
for heterogeneous materials with single-scale structures. However, two-point
information via S2 is not sufficient to accurately model multi-scale media.
Moreover, we construct realizations of hypothetical materials with desired
structural characteristics obtained by manipulating their two-point correlation
functions.Comment: 35 pages, 19 figure
Invasion percolation and critical transient in the Barabási Model of human dynamics
We introduce an exact probabilistic description for L=2 of the Barabási model for the dynamics of a list of L tasks. This permits us to study the problem out of the stationary state and to solve explicitly the extremal limit case where a critical behavior for the waiting time distribution is observed. This behavior deviates at any finite time from that of the stationary state. We study also the characteristic relaxation time for finite time deviations from stationarity in all cases showing that it diverges in the extremal limit, confirming that these deviations are important at all time
- …