240 research outputs found
Inertial Stochastic PALM (iSPALM) and Applications in Machine Learning
Inertial algorithms for minimizing nonsmooth and nonconvex functions as the
inertial proximal alternating linearized minimization algorithm (iPALM) have
demonstrated their superiority with respect to computation time over their non
inertial variants. In many problems in imaging and machine learning, the
objective functions have a special form involving huge data which encourage the
application of stochastic algorithms. While algorithms based on stochastic
gradient descent are still used in the majority of applications, recently also
stochastic algorithms for minimizing nonsmooth and nonconvex functions were
proposed. In this paper, we derive an inertial variant of a stochastic PALM
algorithm with variance-reduced gradient estimator, called iSPALM, and prove
linear convergence of the algorithm under certain assumptions. Our inertial
approach can be seen as generalization of momentum methods widely used to speed
up and stabilize optimization algorithms, in particular in machine learning, to
nonsmooth problems. Numerical experiments for learning the weights of a
so-called proximal neural network and the parameters of Student-t mixture
models show that our new algorithm outperforms both stochastic PALM and its
deterministic counterparts
A note on the dual treatment of higher order regularization functionals
In this paper, we apply the dual approach developed by A. Chambolle for the Rudin-Osher-Fatemi model to regularization functionals with higher order derivatives. We emphasize the linear algebra point of view by consequently using matrix-vector notation. Numerical examples demonstrate the differences between various second order regularization approaches
Nonlocal Myriad Filters for Cauchy Noise Removal
The contribution of this paper is two-fold. First, we introduce a generalized
myriad filter, which is a method to compute the joint maximum likelihood
estimator of the location and the scale parameter of the Cauchy distribution.
Estimating only the location parameter is known as myriad filter. We propose an
efficient algorithm to compute the generalized myriad filter and prove its
convergence. Special cases of this algorithm result in the classical myriad
filtering, respective an algorithm for estimating only the scale parameter.
Based on an asymptotic analysis, we develop a second, even faster generalized
myriad filtering technique.
Second, we use our new approaches within a nonlocal, fully unsupervised
method to denoise images corrupted by Cauchy noise. Special attention is paid
to the determination of similar patches in noisy images. Numerical examples
demonstrate the excellent performance of our algorithms which have moreover the
advantage to be robust with respect to the parameter choice
First order algorithms in variational image processing
Variational methods in imaging are nowadays developing towards a quite
universal and flexible tool, allowing for highly successful approaches on tasks
like denoising, deblurring, inpainting, segmentation, super-resolution,
disparity, and optical flow estimation. The overall structure of such
approaches is of the form ; where the functional is a data fidelity term also
depending on some input data and measuring the deviation of from such
and is a regularization functional. Moreover is a (often linear)
forward operator modeling the dependence of data on an underlying image, and
is a positive regularization parameter. While is often
smooth and (strictly) convex, the current practice almost exclusively uses
nonsmooth regularization functionals. The majority of successful techniques is
using nonsmooth and convex functionals like the total variation and
generalizations thereof or -norms of coefficients arising from scalar
products with some frame system. The efficient solution of such variational
problems in imaging demands for appropriate algorithms. Taking into account the
specific structure as a sum of two very different terms to be minimized,
splitting algorithms are a quite canonical choice. Consequently this field has
revived the interest in techniques like operator splittings or augmented
Lagrangians. Here we shall provide an overview of methods currently developed
and recent results as well as some computational studies providing a comparison
of different methods and also illustrating their success in applications.Comment: 60 pages, 33 figure
Unsupervised Multi Class Segmentation of 3D Images with Intensity Inhomogeneities
Intensity inhomogeneities in images constitute a considerable challenge in
image segmentation. In this paper we propose a novel biconvex variational model
to tackle this task. We combine a total variation approach for multi class
segmentation with a multiplicative model to handle the inhomogeneities. Our
method assumes that the image intensity is the product of a smoothly varying
part and a component which resembles important image structures such as edges.
Therefore, we penalize in addition to the total variation of the label
assignment matrix a quadratic difference term to cope with the smoothly varying
factor. A critical point of our biconvex functional is computed by a modified
proximal alternating linearized minimization method (PALM). We show that the
assumptions for the convergence of the algorithm are fulfilled by our model.
Various numerical examples demonstrate the very good performance of our method.
Particular attention is paid to the segmentation of 3D FIB tomographical images
which was indeed the motivation of our work
- âŠ