11 research outputs found

    Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex

    Full text link
    From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits

    Electrophysiological and Morphological Characterization of Neuronal Microcircuits in Acute Brain Slices Using Paired Patch-Clamp Recordings

    Full text link
    The combination of patch clamp recordings from two (or more) synaptically coupled neurons (paired recordings) in acute brain slice preparations with simultaneous intracellular biocytin filling allows a correlated analysis of their structural and functional properties. With this method it is possible to identify and characterize both pre- and postsynaptic neurons by their morphology and electrophysiological response pattern. Paired recordings allow studying the connectivity patterns between these neurons as well as the properties of both chemical and electrical synaptic transmission. Here, we give a step-by-step description of the procedures required to obtain reliable paired recordings together with an optimal recovery of the neuron morphology. We will describe how pairs of neurons connected via chemical synapses or gap junctions are identified in brain slice preparations. We will outline how neurons are reconstructed to obtain their 3D morphology of the dendritic and axonal domain and how synaptic contacts are identified and localized. We will also discuss the caveats and limitations of the paired recording technique, in particular those associated with dendritic and axonal truncations during the preparation of brain slices because these strongly affect connectivity estimates. However, because of the versatility of the paired recording approach it will remain a valuable tool in characterizing different aspects of synaptic transmission at identified neuronal microcircuits in the brain

    Axonal Projection, Input and Output Synapses, and Synaptic Physiology of Cajal-Retzius Cells in the Developing Rat Neocortex

    Full text link
    Cajal-Retzius (CR) cells are among the earliest generated neurons and are thought to play a role in corticogenesis and early neuronal migration. However, the role of CR cells in an early cortical microcircuit is still rather unclear. We therefore have investigated the morphology and physiology of CR cells by using whole-cell patch-clamp recordings combined with intracellular biocytin filling in acute brain slices of postnatal day 5-11 rats. CR cells are characterized by a long horizontally oriented dendrite; the axonal collaterals form a dense horizontally oriented plexus in layer 1 and to a certain extent in layer 2/3, projecting over > 2 mm of cortical surface. The bouton density is relatively high, and synaptic contacts are established preferentially with dendritic spines or shafts of excitatory neurons, presumably terminal tuft dendrites of pyramidal neurons. In turn, CR cells receive dense GABAergic and non-GABAergic input on somata, dendritic shafts, and spine-like appendages. Extracellular stimulation in layer 1 could activate both GABAergic and glutamatergic synaptic inputs. The GABAergic response was blocked by the GABAA receptor antagonist bicuculline. The glutamatergic response was mediated solely by NMDA receptors and was highly sensitive to ifenprodil, indicating that it was mediated mainly via NR1/NR2B subunit-containing receptors. NMDA EPSPs were apparent in 1 mM extracellular Mg2+, suggesting that this pure NMDA synapse is not silent functionally. Together, the long-range horizontal projection of the axon, the high density of synaptic boutons, and the functional synaptic input of CR cells suggest that they are an integral part of an early cortical network

    Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex

    Full text link
    From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits

    Muscarinic and Nicotinic Modulation of Neocortical Layer 6A Synaptic Microcircuits Is Cooperative and Cell-Specific

    Full text link
    Acetylcholine (ACh) is known to regulate cortical activity during different behavioral states, for example, wakefulness and attention. Here we show a differential expression of muscarinic ACh receptors (mAChRs) and nicotinic ACh receptors (nAChRs) in different layer 6A (L6A) pyramidal cell (PC) types of somatosensory cortex. At low concentrations, ACh induced a persistent hyperpolarization in corticocortical (CC) but a depolarization in corticothalamic (CT) L6A PCs via M 4 and M1 mAChRs, respectively. At ~ 1 mM, ACh depolarized exclusively CT PCs via α4β2 subunit-containing nAChRs without affecting CC PCs. Miniature EPSC frequency in CC PCs was decreased by ACh but increased in CT PCs. In synaptic connections with a presynaptic CC PC, glutamate release was suppressed via M4 mAChR activation but enhanced by nAChRs via α4β2 nAChRs when the presynaptic neuron was a CT PC. Thus, in L6A, the interaction of mAChRs and nAChRs results in an altered excitability and synaptic release, effectively strengthening CT output while weakening CC synaptic signaling
    corecore