6 research outputs found

    Macrophage inhibitory factor (MIF) gene polymorphisms are associated with disease susceptibility and with circulating MIF levels in active non‐segmental vitiligo in patients from western Mexico

    No full text
    Abstract Background The macrophage migration inhibiting factor (MIF) is a protein that promotes the activation of immune cells and the production of other proinflammatory cytokines such as TNF‐α, IL‐1ÎČ, and IFN‐γ, which have proposed to play an essential role in the pathogenesis of vitiligo. The study aimed to assess the association between MIF polymorphisms (−794 CATT5‐8 and −173 G>C), MIF in situ expression, and MIF serum concentrations with susceptibility and disease activity in patients with non‐segmental vitiligo (NSV) from western Mexico. Methods The study included 111 patients with NSV and 201 control subjects. Genotyping was performed by conventional PCR (−794 CATT5‐8) and PCR‐RFLP (−173 G>C) methods. MIF mRNA expression was quantified by real‐time PCR and MIF serum concentrations were determined by ELISA kit. Histopathological samples were analyzed by automated immunohistochemistry. Results The MIF polymorphisms were associated with NSV susceptibility. Serum concentrations of MIF were higher in patients with active NSV and correlated negatively with the years of evolution. The depigmented skin from patients with active vitiligo showed a high expression of MIF. Conclusion MIF polymorphisms increase the risk of NSV in the western Mexican population. The serum concentrations of MIF and in situ expression are associated with active NSV

    Efficacy and Safety of Heterologous Booster Vaccination after Ad5-nCoV (CanSino Biologics) Vaccine: A Preliminary Descriptive Study

    No full text
    Several studies have reported the benefits and safety of heterologous vaccination among different approved vaccines; however, there are no specific reports on the effects of vaccination with the Ad5-nCoV and other vaccines of the same or different technologies. In the present study, we evaluated the neutralizing antibodies percentage against SARS-CoV-2 in Mexican patients immunized with the Ad5-nCoV vaccine six months after its application. Moreover, the effect of the heterologous vaccination with the Ad5-nCoV vaccine and a booster dose of ChAdOx1-S-Nov-19, Ad26.COV2.S, BNT162b2, or mRNA-127 were determined. Our results suggest that a heterologous regimen of one dose with Ad5-nCoV vaccine followed by a booster dose of a different vaccine is safe and induces a stronger humoral immune response

    ICOS Gene Polymorphisms (IVS1 + 173 T/C and c. 1624 C/T) in Primary Sjögren’s Syndrome Patients: Analysis of ICOS Expression

    No full text
    Background: Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease, which affects exocrine glands. T cell activation is a trigger mechanism in the immune response. Hyperreactivity of T cells and antibody production are features in pSS. ICOS can be critical in the pathogenesis of pSS. Methods: A total of 134 pSS patients and 134 control subjects (CS) were included. Genotyping was performed by PCR-RFLP. ICOS mRNA expression was quantified by real-time PCR, and CD4+ ICOS+ T cells were determined by flow cytometry. Results: The ICOS IVS1 + 173 T>C polymorphisms were not associated with susceptibility to pSS (p = 0.393, CI = 0.503–1.311). However, the c.1624 C>T polymorphism was associated with a reduction in the risk of development of pSS (p = 0.015, CI = 0.294–0.884). An increase in ICOS mRNA expression in patients was observed (3.7-fold). Furthermore, pSS patients showed an increase in membranal-ICOS expression (mICOS). High expression of mICOS (MFI) was associated with lymphocytic infiltration. Conclusions: The IVS1 + 173 polymorphism is not a genetic marker for the development of pSS, while c.1624 T allele was associated with a low risk. However, elevated mICOS expression in pSS patients with high lymphocytic infiltration was found. ICOS may have an important role in the immunopathogenesis of pSS and should be analyzed in T cell subsets in pSS patients as a possible disease marker

    <i>PADI4</i> Haplotypes Contribute to mRNA Expression, the Enzymatic Activity of Peptidyl Arginine Deaminase and Rheumatoid Arthritis Risk in Patients from Western Mexico

    No full text
    Citrullination is catalyzed by the peptidyl arginine deiminase 4 (PAD4) enzyme, encoded by the PADI4 gene. Increased PAD4 activity promotes the onset and progression of rheumatoid arthritis (RA). This study aimed to evaluate the association of PADI4 haplotypes with RA risk, mRNA expression, and the PAD4 activity in patients with RA from Mexico. Methodology: 100 RA patients and 100 control subjects (CS) were included. Genotyping was performed by PCR-RFLP method, PADI4 mRNA expression was quantified by real-time PCR, the contribution of PADI4 alleles (PADI4_89 G>A, PADI4_90 T>C, and PADI4_92 G>C) to mRNA expression by the ASTQ method, and PAD4 activity by HPLC. Also, the anti-CCP and anti-PADI4 antibodies were quantified by ELISA. Results: The three PADI4 polymorphisms were associated with RA susceptibility (OR = 1.72, p = 0.005; OR = 1.62; p = 0.014; OR = 1.69; p = 0.009; respectively). The 89G, 90T, and 92G alleles have a higher relative contribution to PADI4 mRNA expression from RA patients than 89A, 90C, and 92C alleles in RA patients. Moreover, the GTG/GTG haplotype was associated with RA susceptibility (OR = 2.86; p = 0.024). The GTG haplotype was associated with higher PADI4 mRNA expression (p = 0.04) and higher PAD4 enzymatic activity (p = 0.007) in RA patients. Conclusions: The evaluated polymorphisms contribute to PADI4 mRNA expression and the enzymatic activity of PAD4 in leukocytes. Therefore, the GTG haplotype is a genetic risk factor for RA in western Mexico, and is associated with increased PADI4 mRNA expression and higher PAD4 activity in these patients

    Seroprevalence of IgM/IgG and Neutralizing Antibodies against SARS-CoV-2 in Unvaccinated Young Adults from Mexico Who Reported Not Having Had a Previous COVID-19 Infection

    No full text
    Background. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19). It is estimated that more than half of new infections are transmitted by asymptomatic people; therefore, the isolation of symptomatic people is not enough to control the spread of the disease. Methods. A total of 171 unvaccinated young adults (18–35 years) from Sonora, Mexico, who underwent a structured survey to identify prior COVID-19 infections, were included in this study. A qualitative determination of anti-SARS-CoV-2 antibodies in serum was performed by lateral flow immunoassay (Certum IgG/IgM Rapid Testℱ cassette kit) and neutralizing antibodies were also determined (GenScript cPass assay). Results. A total of 36 people reported a history of COVID-19 infection, and 135 reported no history of COVID-19. In contrast, 49.6% (67/135) of individuals who had not reported a previous SARS-CoV-2 infection were seropositive to the rapid anti-SARS-CoV-2 antibody test, and 48.1% (65/135) of them had neutralizing antibodies. Conclusions. These results suggest that in young adults, SARS-CoV-2 infections could be asymptomatic in a high percentage of individuals, which could contribute in part to the slow control of the current pandemic due to the large number of asymptomatic cases that are contagious and that could be a silent spread of the virus

    Steroid Resistance Associated with High MIF and P-gp Serum Levels in SLE Patients

    No full text
    Approximately 30% of patients with systemic lupus erythematosus (SLE) present steroid resistance (SR). Macrophage migration inhibition factor (MIF) and P-glycoprotein (P-gp) could be related to SR. This work aims to evaluate the relationship between MIF and P-pg serum levels in SR in SLE. Methods: Case&ndash;control study including 188 SLE patients who were divided into two groups (90 in the steroid-resistant group and 98 in the steroid-sensitive (SS) group) and 35 healthy controls. MIF and P-gp serum levels were determined by ELISA. Multivariable logistic regression and chi-squared automatic interaction detection (CHAID) were used to explore risk factors for SR. Results: The steroid-resistant group presented higher MIF and P-gp serum levels in comparison with the SS (p &lt; 0.001) and reference (p &lt; 0.001) groups. MIF correlated positively with P-gp (rho = 0.41, p &lt; 0.001). MIF (&ge;15.75 ng/mL) and P-gp (&ge;15.22 ng/mL) were a risk factor for SR (OR = 2.29, OR = 5.27). CHAID identified high P-gp as the main risk factor for SR and high MIF as the second risk factor in those patients with low P-gp. Conclusions: An association between MIF and P-gp serum levels was observed in SR. CHAID identified P-gp &ge; 15.22 ng/mL as the main risk factor for SR. More studies are needed to validate these results
    corecore