15 research outputs found
Angiotensin II Type 1 Receptors and Systemic Hemodynamic and Renal Responses to Stress and Altered Blood Volume in Conscious Rabbits
We examined how systemic blockade of type 1 angiotensin (AT1-) receptors affects reflex control of the circulation and the kidney. In conscious rabbits, the effects of candesartan on responses of systemic and renal hemodynamics and renal excretory function to acute hypoxia, mild hemorrhage, and plasma volume expansion were tested. Candesartan reduced resting mean arterial pressure (MAP, −8 ± 2%) without significantly altering cardiac output (CO), increased renal blood flow (RBF, +38 ± 9%) and reduced renal vascular resistance (RVR, −32 ± 6%). Glomerular filtration rate (GFR) was not significantly altered but sodium excretion (UNa+V) increased fourfold. After vehicle treatment, hypoxia (10% inspired O2 for 30 min) did not significantly alter MAP or CO, but reduced heart rate (HR, −17 ± 6%), increased RVR (+33 ± 16%) and reduced GFR (−46 ± 16%) and UNa+V (−41 ± 17%). Candesartan did not significantly alter these responses. After vehicle treatment, plasma volume expansion increased CO (+35 ± 7%), reduced total peripheral resistance (TPR, −26 ± 5%), increased RBF (+62 ± 23%) and reduced RVR (−32 ± 9%), but did not significantly alter MAP or HR. It also increased UNa+V (803 ± 184%) yet reduced GFR (−47 ± 9%). Candesartan did not significantly alter these responses. After vehicle treatment, mild hemorrhage did not significantly alter MAP but increased HR (+16 ± 3%), reduced CO (−16 ± 4%) and RBF (−18 ± 6%), increased TPR (+18 ± 4%) and tended to increase RVR (+18 ± 9%, P = 0.1), but had little effect on GFR or UNa+V. But after candesartan treatment MAP fell during hemorrhage (−19 ± 1%), while neither TPR nor RVR increased, and GFR (−64 ± 18%) and UNa+V (−83 ± 10%) fell. AT1-receptor activation supports MAP and GFR during hypovolemia. But AT1-receptors appear to play little role in the renal vasoconstriction, hypofiltration, and antinatriuresis accompanying hypoxia, or the systemic and renal vasodilatation and natriuresis accompanying plasma volume expansion
Renal oxygenation in acute renal ischemia-reperfusion injury
Tissue hypoxia has been demonstrated, in both the renal cortex and medulla, during the acute phase of reperfusion after ischemia induced by occlusion of the aorta upstream from the kidney. However, there are also recent clinical observations indicating relatively well preserved oxygenation in the nonfunctional transplanted kidney. To test whether severe acute kidney injury can occur in the absence of widespread renal tissue hypoxia, we measured cortical and inner medullary tissue PO2 as well as total renal O2 delivery (DO2) and O2 consumption (V ̇O2) during the first 2 h of reperfusion after 60 min of occlusion of the renal artery in anesthetized rats. To perform this experiment, we used a new method for measuring kidney DO2 andV ̇O2 that relies on implantation of fluorescence optodes in the femoral artery and renal vein. We were unable to detect reductions in renal cortical or inner medullary tissue PO2 during reperfusion after ischemia localized to the kidney. This is likely explained by the observation thatV ̇O2 (-57%) was reduced by at least as much as DO2 (-45%), due to a large reduction in glomerular filtration (-94%). However, localized tissue hypoxia, as evidence by pimonidazole adduct immunohistochemistry, was detected in kidneys subjected to ischemia and reperfusion, particularly in, but not exclusive to, the outer medulla. Thus, cellular hypoxia, particularly in the outer medulla, may still be present during reperfusion even when reductions in tissue PO2 are not detected in the cortex or inner medulla
Altered responsiveness of the kidney to activation of the renal nerves in fat-fed rabbits
We tested whether mild adiposity alters responsiveness of the kidney to activation of the renal sympathetic nerves. After rabbits were fed a high-fat or control diet for 9 wk, responses to reflex activation of renal sympathetic nerve activity (RSNA) with hypoxia and electrical stimulation of the renal nerves (RNS) were examined under pentobarbital anesthesia. Fat pad mass and body weight were, respectively, 74% and 6% greater in fat-fed rabbits than controls. RNS produced frequency-dependent reductions in renal blood flow, cortical and medullary perfusion, glomerular filtration rate, urine flow, and sodium excretion and increased renal plasma renin activity (PRA) overflow. Responses of sodium excretion and medullary perfusion were significantly enhanced by fat feeding. For example, 1 Hz RNS reduced sodium excretion by 79 ± 4% in fat-fed rabbits and 46 ± 13% in controls. RNS (2 Hz) reduced medullary perfusion by 38 ± 11% in fat-fed rabbits and 9 ± 4% in controls. Hypoxia doubled RSNA, increased renal PRA overflow and medullary perfusion, and reduced urine flow and sodium excretion, without significantly altering mean arterial pressure (MAP) or cortical perfusion. These effects were indistinguishable in fat-fed and control rabbits. Neither MAP nor PRA were significantly greater in conscious fat-fed than control rabbits. These observations suggest that mild excess adiposity can augment the antinatriuretic response to renal nerve activation by RNS, possibly through altered neural control of medullary perfusion. Thus, sodium retention in obesity might be driven not only by increased RSNA, but also by increased responsiveness of the kidney to RSNA