8 research outputs found
Synergistical Use of Electrostatic and Hydrophobic Interactions for the Synthesis of a New Class of Multifunctional Nanohybrids: Plasmonic Magneto-Liposomes
By carefully controlling the electrostatic interactions between cationic liposomes, which already incorporate magnetic nanoparticles in the bilayers, and anionic gold nanoparticles, a new class of versatile multifunctional nanohybrids (plasmonic magneto-liposomes) that could have a major impact in drug delivery and controlled release applications has been synthesized. The experimental results confirmed the successful synthesis of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) and polyethylene glycol functionalized (PEGylated) gold nanoparticles (AuNPs). The SPIONs were incorporated in the liposomal lipidic bilayers, thus promoting the formation of cationic magnetoliposomes. Different concentrations of SPIONs were loaded in the membrane. The cationic magnetoliposomes were decorated with anionic PEGylated gold nanoparticles using electrostatic interactions. The successful incorporation of SPIONs together with the modifications they generate in the bilayer were analyzed using Raman spectroscopy. The plasmonic properties of the multifunctional nanohybrids were investigated using UV-Vis absorption and (surface-enhanced) Raman spectroscopy. Their hyperthermic properties were recorded at different frequencies and magnetic field intensities. After the synthesis, the nanosystems were extensively characterized in order to properly evaluate their potential use in drug delivery applications and controlled release as a result of the interaction with an external stimulus, such as an NIR laser or alternating magnetic field
PEGylated Gold Nanoparticles with Interesting Plasmonic Properties Synthesized Using an Original, Rapid, and Easy-to-Implement Procedure
In this letter, we report a new, one-step, rapid, and easy-to-implement method for the synthesis of PEGylated gold nanoparticles (PEG-AuNPs) having a narrow size distribution and very interesting plasmonic properties. Unmodified polyethylene glycol molecules with a molecular weight of 1000âg/mole (PEG1000) have been employed as reducing and capping agents for the synthesis of spherical gold nanoparticles having an average diameter of 35ânm, within a few minutes. The novelty of the herein proposed synthesis method consists in the fact that the synthesis takes place inside of a sealed bottle flask containing aqueous solutions of PEG1000, tetrachloroauric(III) acid (HAuCl4), and NaOH, placed in the center of a microwave oven, capable to provide a very uniform temperature environment. It turned out that, during the very short synthesis procedure (2 minutes), PEG 1000 suffers an oxidative transformation in such a manner that its terminal alcohol groups (-CH2-OH) are transformed in carboxylate ones (-COOâ). The as-synthesized PEG-AuNPs possess very interesting plasmonic properties allowing the detection of different molecules by means of SER spectroscopy performed either in liquid droplets or on solid spots. As a consequence of their unique plasmonic properties, the SER spectra acquired using this new class of nanoparticles on different molecules of interest (methylene blue, rhodamine 6G, doxorubicin, and 5-fluorouracil) are highly reproducible, making them ideal candidates for further use as SERS substrates
Solid Plasmonic Substrates for Breast Cancer Detection by Means of SERS Analysis of Blood Plasma
Surface enhanced Raman spectroscopy (SERS) represents a promising technique in providing specific molecular information that could have a major impact in biomedical applications, such as early cancer detection. SERS requires the presence of a suitable plasmonic substrate that can generate enhanced and reproducible diagnostic relevant spectra. In this paper, we propose a new approach for the synthesis of such a substrate, by using concentrated silver nanoparticles purified using the Tangential Flow Filtration method. The capacity of our substrates to generate reproducible and enhanced Raman signals, in a manner that can allow cancer detection by means of Multivariate Analysis (MVA) of Surface Enhanced Raman (SER) spectra, has been tested on blood plasma samples collected from 35 healthy donors and 29 breast cancer patients. All the spectra were analyzed by a combined Principal Component-Linear Discriminant Analysis. Our results facilitated the discrimination between healthy donors and breast cancer patients with 90% sensitivity, 89% specificity and 89% accuracy. This is a direct consequence of substrates’ ability to generate diagnostic relevant spectral information by performing SERS measurements on pristine blood plasma samples. Our results suggest that this type of solid substrate could be employed for the detection of other types of cancer or other diseases by means of MVA-SERS procedure
Facile Microwave Assisted Synthesis of Silver Nanostars for Ultrasensitive Detection of Biological Analytes by SERS
We report a very simple, rapid and reproducible method for the fabrication of anisotropic silver nanostars (AgNS) that can be successfully used as highly efficient SERS substrates for different bioanalytes, even in the case of a near-infra-red (NIR) excitation laser. The nanostars have been synthesized using the chemical reduction of Ag+ ions by trisodium citrate. This is the first research reporting the synthesis of AgNS using only trisodium citrate as a reducing and stabilizing agent. The key elements of this original synthesis procedure are rapid hydrothermal synthesis of silver nanostars followed by a cooling down procedure by immersion in a water bath. The synthesis was performed in a sealed bottom flask homogenously heated and brought to a boil in a microwave oven. After 60 s, the colloidal solution was cooled down to room temperature by immersion in a water bath at 35 °C. The as-synthesized AgNS were washed by centrifugation and used for SERS analysis of test molecules (methylene blue) as well as biological analytes: pharmaceutical compounds with various Raman cross sections (doxorubicin, atenolol & metoprolol), cell lysates and amino acids (methionine & cysteine). UV-Vis absorption spectroscopy, (Scanning) Transmission Electron Microscopy ((S)TEM) and Atomic Force Microscopy (AFM) have been employed for investigating nanostarsâ physical properties
New Insights into the Multivariate Analysis of SER Spectra Collected on Blood Samples for Prostate Cancer Detection: Towards a Better Understanding of the Role Played by Different Biomolecules on Cancer Screening: A Preliminary Study
It is possible to obtain diagnostically relevant data on the changes in biochemical elements brought on by cancer via the use of multivariate analysis of vibrational spectra recorded on biological fluids. Prostate cancer and control groups included in this research generated almost similar SERS spectra, which means that the values of peak intensities present in SERS spectra can only give unspecific and limited information for distinguishing between the two groups. Our diagnostic algorithm for prostate cancer (PCa) differentiation was built using principal component analysis and linear discriminant analysis (PCA-LDA) analysis of spectral data, which has been widely used in spectral data management in many studies and has shown promising results so far. In order to fully utilize the entire SERS spectrum and automatically determine the most meaningful spectral features that can be used to differentiate PCa from healthy patients, we perform a multivariate analysis on both the entire and specific spectral intervals. Using the PCA-LDA model, the prostate cancer and control groups are clearly distinguished in our investigation. The separability of the following two data sets is also evaluated using two alternative discrimination techniques: principal least squares discriminant analysis (PLS-DA) and principal component analysis—support vector machine (PCA-SVM)
The Effects of Low-Dose Irradiation on Human Saliva: A Surface-Enhanced Raman Spectroscopy Study
Biological effects of low-dose ionizing radiation (IR) have been unclear until now. Saliva, because of the ease of collection, could be valuable in studying low-dose IR effects by means of surface-enhanced Raman spectroscopy (SERS). The objective of our study was to compare the salivary SER spectra recorded before and after low-dose IR exposure in the case of pediatric patients (PP). Unstimulated saliva was collected from ten PP before and after irradiation with a cone beam computed tomography (CBCT) machine used for diagnostic purposes. The SERS measurements have been recorded on dried saliva samples using a solid nanosilver plasmonic substrate synthesized using an original method developed in our laboratory. The experimental results showed that salivary SER spectra are dominated by three vibrational bands (441,735 and 2107 cm−1) that can be assigned to bending and stretching vibrations of salivary thiocyanate (SCN-). After exposure, an immediate increase of vibrational bands assigned to SCN- has been recorded in the case of all samples, probably as a result of IR interaction with oral cavity. This finding suggests that SCN- could be used as a valuable biomarker for the detection and identification of low-dose radiation effects
New Insights into the Magnetic Properties of CoFe2O4@SiO2@Au Magnetoplasmonic Nanoparticles
We report the successful synthesis and a complete magnetic characterization of CoFe2O4@SiO2@Au magnetoplasmonic nanoparticles. The CoFe2O4 magnetic nanoparticles were prepared using the hydrothermal method. A subsequent SiO2 shell followed by a plasmonic Au shell were deposited on the magnetic core creating magnetoplasmonic nanoparticles with a core–shell architecture. A spin-glass-type magnetism was shown at the surface of the CoFe2O4 nanograins. Depending on the external magnetic field, two types of spin-glass were identified and analyzed in correlation with the exchange field acting on octahedral and tetrahedral iron sites. The magnetization per formula unit of the CoFe2O4 core is not changed in the case of CoFe2O4@SiO2@Au nanocomposites. The gold nanoparticles creating the plasmonic shell show a giant diamagnetic susceptibility, dependent on their crystallite sizes