19,092 research outputs found
Dark-matter dynamical friction versus gravitational-wave emission in the evolution of compact-star binaries
The measured orbital period decay of compact-star binaries, with
characteristic orbital periods ~days, is explained with very high
precision by the gravitational wave (GW) emission of an inspiraling binary in
vacuum. However, the binary gravitational binding energy is also affected by an
usually neglected phenomenon, namely the dark matter dynamical friction (DMDF)
produced by the interaction of the binary components with their respective DM
gravitational wakes. The entity of this effect depends on the orbital period
and on the local value of the DM density, hence on the position of the binary
in the Galaxy. We evaluate the DMDF produced by three different DM profiles:
the Navarro-Frenk-White (NFW), the non-singular-isothermal-sphere (NSIS) and
the Ruffini-Arg\"uelles-Rueda (RAR) profile based on self-gravitating keV
fermions. We first show that indeed, due to their Galactic position, the GW
emission dominates over the DMDF in the NS-NS, NS-WD and WD-WD binaries for
which measurements of the orbital decay exist. Then, we evaluate the conditions
under which the effect of DMDF on the binary evolution becomes comparable to,
or overcomes, the one of the GW emission. We find that, for instance for
-- NS-WD, --~ NS-NS, and
--~ WD-WD, located at 0.1~kpc, this occurs at orbital
periods around 20--30 days in a NFW profile while, in a RAR profile, it occurs
at about 100 days. For closer distances to the Galactic center, the DMDF effect
increases and the above critical orbital periods become interestingly shorter.
Finally, we also analyze the system parameters for which DMDF leads to an
orbital widening instead of orbital decay. All the above imply that a
direct/indirect observational verification of this effect in compact-star
binaries might put strong constraints on the nature of DM and its Galactic
distribution.Comment: 15 pages, 12 figures, 2 tables, accepted for publication in Phys.
Rev. D, 201
Effect of Loss on Multiplexed Single-Photon Sources
An on-demand single-photon source is a key requirement for scaling many
optical quantum technologies. A promising approach to realize an on-demand
single-photon source is to multiplex an array of heralded single-photon sources
using an active optical switching network. However, the performance of
multiplexed sources is degraded by photon loss in the optical components and
the non-unit detection efficiency of the heralding detectors. We provide a
theoretical description of a general multiplexed single-photon source with
lossy components and derive expressions for the output probabilities of
single-photon emission and multi-photon contamination. We apply these
expressions to three specific multiplexing source architectures and consider
their tradeoffs in design and performance. To assess the effect of lossy
components on near- and long-term experimental goals, we simulate the
multiplexed sources when used for many-photon state generation under various
amounts of component loss. We find that with a multiplexed source composed of
switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors,
a single-photon source capable of efficiently producing 20-40 photon states
with low multi-photon contamination is possible, offering the possibility of
unlocking new classes of experiments and technologies.Comment: Journal versio
Many-Body Electronic Structure of Americium metal
We report computer based simulations of energetics, spectroscopy and
electron-phonon interaction of americium using a novel spectral density
functional method. This approach gives rise to a new concept of a many-body
electronic structure and reveals the unexpected mixed valence regime of Am 5f6
electrons which under pressure acquire the 5f7 valence state. This explains
unique properties of Am and addresses the fundamental issue of how the
localization delocalization edge is approached from the localized side in a
closed shell system.Comment: 4 pages, 3 figure
Signatures of exchange correlations in the thermopower of quantum dots
We use a many-body rate-equation approach to calculate the thermopower of a
quantum dot in the presence of an exchange interaction. At temperatures much
smaller than the single-particle level spacing, the known quantum jumps
(discontinuities) in the thermopower are split by the exchange interaction. The
origin and nature of the splitting are elucidated with a simple physical
argument based on the nature of the intermediate excited state in the
sequential tunneling approach. We show that this splitting is sensitive to the
number parity of electrons in the dot and the dot's ground-state spin. These
effects are suppressed when cotunneling dominates the electrical and thermal
conductances. We calculate the thermopower in the presence of elastic
cotunneling, and show that some signatures of exchange correlations should
still be observed with current experimental methods. In particular, we propose
a method to determine the strength of the exchange interaction from
measurements of the thermopower.Comment: 18 pages, 6 figures Revised figure 6, and changed discussion of
figure
Non-linear screening of spherical and cylindrical colloids: the case of 1:2 and 2:1 electrolytes
From a multiple scale analysis, we find an analytic solution of spherical and
cylindrical Poisson-Boltzmann theory for both a 1:2 (monovalent co-ions,
divalent counter-ions) and a 2:1 (reversed situation) electrolyte. Our approach
consists in an expansion in powers of rescaled curvature , where
is the colloidal radius and the Debye length of the electrolytic
solution. A systematic comparison with the full numerical solution of the
problem shows that for cylinders and spheres, our results are accurate as soon
as . We also report an unusual overshooting effect where the
colloidal effective charge is larger than the bare one.Comment: 9 pages, 11 figure
The X-ray Ridge Surrounding Sgr A* at the Galactic Center
We present the first detailed simulation of the interaction between the
supernova explosion that produced Sgr A East and the wind-swept inner ~ 2-pc
region at the Galactic center. The passage of the supernova ejecta through this
medium produces an X-ray ridge ~ 9'' to 15'' to the NE of the supermassive
black hole Sagittarius A* (Sgr A*). We show that the morphology and X-ray
intensity of this feature match very well with recently obtained Chandra
images, and we infer a supernova remnant age of less than 2,000 years. This
young age--a factor 3--4 lower than previous estimates--arises from our
inclusion of stellar wind effects in the initial (pre-explosion) conditions in
the medium. The supernova does not clear out the central ~ 0.2-pc region around
Sgr~A* and does not significantly alter the accretion rate onto the central
black hole upon passage through the Galactic center.Comment: 10 pages, 3 figures, submitted to ApJ
Strong lensing by fermionic dark matter in galaxies
It has been shown that a self-gravitating system of massive keV fermions in
thermodynamic equilibrium correctly describes the dark matter (DM) distribution
in galactic halos and predicts a denser quantum core towards the center of the
configuration. Such a quantum core, for a fermion mass in the range of keV
keV, can be an alternative interpretation of the
central compact object in Sgr A*. We present in this work the gravitational
lensing properties of this novel DM model in Milky Way-like spiral galaxies. We
describe the lensing effects of the pure DM component both on halo scales,
where we compare them to the effects of the Navarro-Frenk-White and the
Non-Singular Isothermal Sphere DM models, and near the galaxy center, where we
compare them with the effects of a Schwarzschild BH. For the particle mass
leading to the most compact DM core, keV, we draw the
following conclusions. At distances pc from the center of the
lens the effect of the central object on the lensing properties is negligible.
However, we show that measurements of the deflection angle produced by the DM
distribution in the outer region at a few kpc, together with rotation curve
data, could help to discriminate between different DM models. We show that at
distances pc strong lensing effects, such as multiple images and
Einstein rings, may occur. Large differences in the deflection angle produced
by a DM central core and a central BH appear at distances
pc; in this regime the weak-field formalism is no longer applicable and the
exact general-relativistic formula has to be used. We find that quantum DM
cores do not show a photon sphere what implies that they do not cast a shadow.
Similar conclusions apply to the other DM distributions for other fermion
masses in the above specified range and for other galaxy types.Comment: 10 pages, 8 figures. v2: Version published in PR
Scattering in Multilayered Structures: Diffraction from a Nanohole
The spectral expansion of the Green's tensor for a planar multilayered
structure allows us to semi analytically obtain the angular spectrum
representation of the field scattered by an arbitrary dielectric perturbation
present in the structure. In this paper we present a method to find the
expansion coefficients of the scattered field, given that the electric field
inside the perturbation is available. The method uses a complete set of
orthogonal vector wave functions to solve the structure's vector wave equation.
In the two semi-infinite bottom and top media, those vector wave functions
coincide with the plane-wave basis vectors, including both propagating and
evanescent components. The technique is used to obtain the complete angular
spectrum of the field scattered by a nanohole in a metallic film under Gaussian
illumination. We also show how the obtained formalism can easily be extended to
spherically and cylindrically multilayered media. In those cases, the expansion
coefficients would multiply the spherical and cylindrical vector wave
functions.Comment: 9 pages, 5 figure
pi-Junction behavior and Andreev bound states in Kondo quantum dots with superconducting leads
We investigate the temperature- and coupling-dependent transport through
Kondo dot contacts with symmetric superconducting s-wave leads. For finite
temperature T we use a superconducting extension of a selfconsistent auxiliary
boson scheme, termed SNCA, while at T=0 a perturbative renormalization group
treatment is applied. The finite-temperature phase diagram for the 0--pi
transition of the Josephson current in the junction is established and related
to the phase-dependent position of the subgap Kondo resonance with respect to
the Fermi energy. The conductance of the contact is evaluated in the zero-bias
limit. It approaches zero in the low-temperature regime, however, at finite T
its characteristics are changed through the coupling- and temperature-dependent
0--pi transition.Comment: 12 pages, 12 figure
On the X-ray Emission from Massive Star Clusters and their Evolving Superbubbles
The X-ray emission properties from the hot thermalized plasma that results
from the collisions of individual stellar winds and supernovae ejecta within
rich and compact star clusters are discussed. We propose a simple analytical
way of estimating the X-ray emission generated by super star clusters and
derive an expression that indicates how this X-ray emission depends on the main
cluster parameters. Our model predicts that the X-ray luminosity from the star
cluster region is highly dependent on the star cluster wind terminal speed, a
quantity related to the temperature of the thermalized ejecta.We have also
compared the X-ray luminosity from the SSC plasma with the luminosity of the
interstellar bubbles generated from the mechanical interaction of the high
velocity star cluster winds with the ISM.We found that the hard (2.0 keV - 8.0
keV) X-ray emission is usually dominated by the hotter SSC plasma whereas the
soft (0.3 keV - 2.0 keV) component is dominated by the bubble plasma. This
implies that compact and massive star clusters should be detected as point-like
hard X-ray sources embedded into extended regions of soft diffuse X-ray
emission. We also compared our results with predictions from the population
synthesis models that take into consideration binary systems and found that in
the case of young,massive and compact super star clusters the X-ray emission
from the thermalized star cluster plasma may be comparable or even larger than
that expected from the HMXB population.Comment: 24 pages, 8 figures, Accepted for publication in The Astrophysical
Journa
- …