2 research outputs found

    Approximate and exact nodes of fermionic wavefunctions: coordinate transformations and topologies

    Full text link
    A study of fermion nodes for spin-polarized states of a few-electron ions and molecules with s,p,ds,p,d one-particle orbitals is presented. We find exact nodes for some cases of two electron atomic and molecular states and also the first exact node for the three-electron atomic system in 4S(p3)^4S(p^3) state using appropriate coordinate maps and wavefunction symmetries. We analyze the cases of nodes for larger number of electrons in the Hartree-Fock approximation and for some cases we find transformations for projecting the high-dimensional node manifolds into 3D space. The node topologies and other properties are studied using these projections. We also propose a general coordinate transformation as an extension of Feynman-Cohen backflow coordinates to both simplify the nodal description and as a new variational freedom for quantum Monte Carlo trial wavefunctions.Comment: 7 pages, 7 figure

    Reconstruction of motional states of neutral atoms via MaxEnt principle

    Get PDF
    We present a scheme for a reconstruction of states of quantum systems from incomplete tomographic-like data. The proposed scheme is based on the Jaynes principle of Maximum Entropy. We apply our algorithm for a reconstruction of motional quantum states of neutral atoms. As an example we analyze the experimental data obtained by the group of C. Salomon at the ENS in Paris and we reconstruct Wigner functions of motional quantum states of Cs atoms trapped in an optical lattice
    corecore