2 research outputs found
Recommended from our members
Reaching for the stars – JWST/NIRSpec spectroscopy of a lensed star candidate at z = 4.76
We present JWST/NIRSpec observations of a highly magnified star candidate at a photometric redshift of zphot ≃ 4.8, previously detected in JWST/NIRCam imaging of the strong lensing (SL) cluster MACS J0647+7015 (z = 0.591). The spectroscopic observation allows us to precisely measure the redshift of the host arc at zspec = 4.758 ± 0.004, and the star’s spectrum displays clear Lyman- and Balmer-breaks commensurate with this redshift. A fit to the spectrum suggests a B-type super-giant star of surface temperature Teff,B ≃ 15 000 K with either a redder F-type companion (Teff,F ≃ 6 250 K) or significant dust attenuation (AV ≃ 0.82) along the line of sight. We also investigate the possibility that this object is a magnified young globular cluster rather than a single star. We show that the spectrum is in principle consistent with a star cluster, which could also accommodate the lack of flux variability between the two epochs. However, the lack of a counter image and the strong upper limit on the size of the object from lensing symmetry, r ≲ 0.5 pc, could indicate that this scenario is somewhat less likely – albeit not completely ruled out by the current data. The presented spectrum seen at a time when the Universe was only ∼1.2 Gyr old showcases the ability of JWST to study early stars through extreme lensing.</p
Heavy element production in a compact object merger observed by JWST
The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GW)2 and likely production sites for heavy element nucleosynthesis via rapid neutron capture (the r-process)3. Here we present observations of the exceptionally bright gamma-ray burst GRB 230307A. We show that GRB 230307A belongs to the class of long-duration gamma-ray bursts associated with compact object mergers4–6, and contains a kilonova similar to AT2017gfo, associated with the gravitational-wave merger GW1708177–12. We obtained James Webb Space Telescope mid-infrared (mid-IR) imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns which we interpret as tellurium (atomic mass A=130), and a very red source, emitting most of its light in the mid-IR due to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create r-process elements across a broad atomic mass range and play a central role in heavy element nucleosynthesis across the Universe.</p