9,466 research outputs found
Delayed star formation in high-redshift stream-fed galaxies
We propose that star formation is delayed relative to the inflow rate in
rapidly-accreting galaxies at very high redshift (z > 2) because of the energy
conveyed by the accreting gas. Accreting gas streams provide fuel for star
formation, but they stir the disk and increase turbulence above the usual
levels compatible with gravitational instability, reducing the star formation
efficiency in the available gas. After the specific inflow rate has
sufficiently decreased - typically at z < 3 - galaxies settle in a
self-regulated regime with efficient star formation. An analytic model shows
that this interaction between infalling gas and young galaxies can
significantly delay star formation and maintain high gas fractions (>40%) down
to z = 2, in contrast to other galaxy formation models. Idealized hydrodynamic
simulations of infalling gas streams onto primordial galaxies confirm the
efficient energetic coupling at z > 2, and suggest that this effect is largely
under-resolved in existing cosmological simulations.Comment: Accepted for publication in MNRAS Letters. 5 pages, 3 figure
Finding complex balanced and detailed balanced realizations of chemical reaction networks
Reversibility, weak reversibility and deficiency, detailed and complex
balancing are generally not "encoded" in the kinetic differential equations but
they are realization properties that may imply local or even global asymptotic
stability of the underlying reaction kinetic system when further conditions are
also fulfilled. In this paper, efficient numerical procedures are given for
finding complex balanced or detailed balanced realizations of mass action type
chemical reaction networks or kinetic dynamical systems in the framework of
linear programming. The procedures are illustrated on numerical examples.Comment: submitted to J. Math. Che
Finding weakly reversible realizations of chemical reaction networks using optimization
An algorithm is given in this paper for the computation of dynamically
equivalent weakly reversible realizations with the maximal number of reactions,
for chemical reaction networks (CRNs) with mass action kinetics. The original
problem statement can be traced back at least 30 years ago. The algorithm uses
standard linear and mixed integer linear programming, and it is based on
elementary graph theory and important former results on the dense realizations
of CRNs. The proposed method is also capable of determining if no dynamically
equivalent weakly reversible structure exists for a given reaction network with
a previously fixed complex set.Comment: 18 pages, 9 figure
Alfalfa Snout Beetle, \u3ci\u3eOtiorhynchus Ligustici\u3c/i\u3e L. (Coleoptera: Curculionidae): Methods for Egg Collection and Larval Rearing
The alfalfa snout beetle, Otiorhynchus ligustici L., is the most serious pest of alfalfa in northern New York State. Recent research efforts focused on the biological control of this insect require the availability of all life stages. With a 2-year lifecycle and a mandatory diapause, the artificial rearing of a laboratory culture appears to be a non-viable option at present, but methods described here can be used to obtain sufficient numbers of eggs and larvae over an extended period of time for research purposes. The crowding of adult beetles in egg production units (cups) had a significant, negative effect on egg production per beetle but the total egg production per cup was still higher with higher number of beetles per cup resulting in a significant saving of labor per egg produced. Larval survival rates in alfalfa-planted cans were surprisingly low given the protected conditions of the greenhouse. The larval survival rates were not significantly different among the dates for the second instar and later instars, suggesting that larval mortality occurs in the first instar in alfalfa-planted cans
The Growth of Red Sequence Galaxies in a Cosmological Hydrodynamic Simulation
We examine the cosmic growth of the red sequence in a cosmological
hydrodynamic simulation that includes a heuristic prescription for quenching
star formation that yields a realistic passive galaxy population today. In this
prescription, halos dominated by hot gas are continually heated to prevent
their coronae from fueling new star formation. Hot coronae primarily form in
halos above \sim10^12 M\odot, so that galaxies with stellar masses \sim10^10.5
M\odot are the first to be quenched and move onto the red sequence at z > 2.
The red sequence is concurrently populated at low masses by satellite galaxies
in large halos that are starved of new fuel, resulting in a dip in passive
galaxy number densities around \sim10^10 M\odot. Stellar mass growth continues
for galaxies even after joining the red sequence, primarily through minor
mergers with a typical mass ratio \sim1:5. For the most massive systems, the
size growth implied by the distribution of merger mass ratios is typically
\sim2\times the corresponding mass growth, consistent with observations. This
model reproduces mass-density and colour-density trends in the local universe,
with essentially no evolution to z = 1, with the hint that such relations may
be washed out by z \sim 2. Simulated galaxies are increasingly likely to be red
at high masses or high local overdensities. In our model, the presence of
surrounding hot gas drives the trends with both mass and environment.Comment: 15 pages, 8 figures. MNRAS accepte
- …
