501 research outputs found

    Variability in Language and Reading in High-Functioning Autism

    Get PDF

    Developing nucleic acid-based electrical detection systems

    Get PDF
    Development of nucleic acid-based detection systems is the main focus of many research groups and high technology companies. The enormous work done in this field is particularly due to the broad versatility and variety of these sensing devices. From optical to electrical systems, from label-dependent to label-free approaches, from single to multi-analyte and array formats, this wide range of possibilities makes the research field very diversified and competitive. New challenges and requirements for an ideal detector suitable for nucleic acid analysis include high sensitivity and high specificity protocol that can be completed in a relatively short time offering at the same time low detection limit. Moreover, systems that can be miniaturized and automated present a significant advantage over conventional technology, especially if detection is needed in the field. Electrical system technology for nucleic acid-based detection is an enabling mode for making miniaturized to micro- and nanometer scale bio-monitoring devices via the fusion of modern micro- and nanofabrication technology and molecular biotechnology. The electrical biosensors that rely on the conversion of the Watson-Crick base-pair recognition event into a useful electrical signal are advancing rapidly, and recently are receiving much attention as a valuable tool for microbial pathogen detection. Pathogens may pose a serious threat to humans, animal and plants, thus their detection and analysis is a significant element of public health. Although different conventional methods for detection of pathogenic microorganisms and their toxins exist and are currently being applied, improvements of molecular-based detection methodologies have changed these traditional detection techniques and introduced a new era of rapid, miniaturized and automated electrical chip detection technologies into pathogen identification sector. In this review some developments and current directions in nucleic acid-based electrical detection are discussed

    The Role of Dimethyl Sulfoxide (DMSO) in Gene Expression Modulation and Glycosaminoglycan Metabolism in Lysosomal Storage Disorders on an Example of Mucopolysaccharidosis

    Get PDF
    Obstacles to effective therapies for mucopolysaccharidoses (MPSs) determine the need for continuous studies in order to enhance therapeutic strategies. Dimethyl sulfoxide (DMSO) is frequently utilised as a solvent in biological studies, and as a vehicle for drug therapy and the in vivo administration of water-insoluble substances. In the light of the uncertainty on the mechanisms of DMSO impact on metabolism of glycosaminoglycans (GAGs) pathologically accumulated in MPSs, in this work, we made an attempt to investigate and resolve the question of the nature of GAG level modulation by DMSO, the isoflavone genistein solvent employed previously by our group in MPS treatment. In this work, we first found the cytotoxic effect of DMSO on human fibroblasts at concentrations above 3%. Also, our results displayed the potential role of DMSO in the regulation of biological processes at the transcriptional level, then demonstrated a moderate impact of the solvent on GAG synthesis. Interestingly, alterations of lysosomal ultrastructure upon DMSO treatment were visible. As there is growing evidence in the literature that DMSO can affect cellular pathways leading to numerous changes, it is important to expand our knowledge concerning this issue

    Catalytic properties of the resolved flavoprotein and cytochrome B components of the NADPH dependent generating oxidase from human neutrophils

    Full text link
    The resolved flavoprotein and cytochrome b559 components of the NADPH dependent generating oxidase from human neutrophils were the subject of further study. The resolved flavoprotein, depleted of cytochrome b559, was reduced by NADPH under anaerobic conditions and reoxidized by oxygen. NADPH dependent generation by the resolved flavoprotein fraction was not detectable, however it was competent in the transfer of electrons from NADPH to artificial electron acceptors. The resolved cytochrome b559, depleted of flavoprotein, demonstrated no measureable NADPH dependent generating activity and was not reduced by NADPH under anaerobic conditions. The dithionite reduced form of the resolved cytochrome b559 was rapidly oxidized by oxygen, as was the cytochrome b559 in the intact oxidase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24928/1/0000355.pd

    Critical factors for the performance of chip array-based electrical detection of DNA for analysis of pathogenic bacteria

    Get PDF
    Different factors influencing chip array-based electrical detection of DNA for analysis of pathogenic bacteria were examined. Both rehydration of capture probe layer of functionalized chip arrays and efficient hybridization of targets irrespective of their length resulted in signal enhancement when high-ionic phosphate-buffered saline (i.e., 600 mM sodium chloride and 40 mM disodium hydrogen phosphate) was used. Similarly, placement of two adjacent capture and detection probe-binding sites at a terminal part of the target strand resulted in significant signal increase. Moreover, 10-min ultrasonic fragmentation of targets amplified the signals up to twofold for longer DNA strands (i.e., >300 bp). No obvious effects on signals were visible for shorter than 400-bp PCR amplicons subjected to ultrasonication. For DNA strands of all sizes, more than 10 min ultrasonication diminished the specific electrical responses. Our results also demonstrate that target analytes are detected with discrimination against mismatches even for single nucleotide sequence alteration. The mismatch detection appeared in order of ease of recognition as follows: triple random > quintuple middle > triple middle > single middle mismatch. Among the three variants of one-base mismatches, a sequence variation was most remarkable for adenine. On the other hand, no benefits in assay sensitivity were recognized by the use of longer capture probe linkers as the 6-C linker

    Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip

    Get PDF
    BACKGROUND: Bacillus cereus constitutes a significant cause of acute food poisoning in humans. Despite the recent development of different detection methods, new effective control measures and better diagnostic tools are required for quick and reliable detection of pathogenic micro-organisms. Thus, the objective of this study was to determine a simple method for rapid identification of enterotoxic Bacillus strains. Here, a special attention is given to an electrochemical biosensor since it meets the requirements of minimal size, lower costs and decreased power consumption. RESULTS: A bead-based sandwich hybridization system was employed in conjugation with electric chips for detection of vegetative cells and spores of Bacillus strains based on their toxin-encoding genes. The system consists of a silicon chip based potentiometric cell, and utilizes paramagnetic beads as solid carriers of the DNA probes. The specific signals from 20 amol of bacterial cell or spore DNA were achieved in less than 4 h. The method was also successful when applied directly to unpurified spore and cell extract samples. The assay for the haemolytic enterotoxin genes resulted in reproducible signals from B. cereus and B. thuringiensis while haemolysin-negative B. subtilis strain did not yield any signal. CONCLUSIONS: The sensitivity, convenience and specificity of the system have shown its potential. In this respect an electrochemical detection on a chip enabling a fast characterization and monitoring of pathogens in food is of interest. This system can offer a contribution in the rapid identification of bacteria based on the presence of specific genes without preceding nucleic acid amplification

    Effect of silicone on the collagen fibrillogenesis and stability

    Get PDF
    Collagen, the most abundant protein in mammals, is able to form fibrils, which have central role in tissue repair, fibrosis, and tumor invasion. As a component of skin, tendons, and cartilages, this protein contacts with any implanted materials. An inherent problem associated with implanted prostheses is their propensity to be coated with host proteins shortly after implantation. Also, silicone implants undergoing relatively long periods of contact with blood can lead to formation of thrombi and emboli. In this paper, we demonstrate the existence of interactions between siloxanes and collagen. Low-molecular-weight cyclic siloxane (hexamethylcyclotrisiloxane—D3) and polydimethylsiloxanes (PDMS) forming linear chains, ranging in viscosity from 20 to 12,000 cSt, were analyzed. We show that D3 as well as short-chain PDMS interact with collagen, resulting in a decrease in fibrillogenesis. However, loss of collagen native structure does not occur because of these interactions. Rather, collagen seems to be sequestered in its native form in an interlayer formed by collagen–siloxane complexes. On the other hand, silicone molecules with longer chains (i.e., PDMS with viscosity of 1000 and 12,000 cSt, the highest viscosity analyzed here) demonstrate little interaction with this protein and do not seem to affect collagen activity
    corecore