3 research outputs found

    The ligational behavior of a phenolic quinolyl hydrazone towards copper(II)- ions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The heterocyclic hydrazones constitute an important class of biologically active drug molecules. The hydrazones have also been used as herbicides, insecticides, nematocides, redenticides, and plant growth regulators as well as plasticizers and stabilizers for polymers. The importance of the phenolic quinolyl hydrazones arises from incorporating the quinoline ring with the phenolic compound; 2,4-dihydroxy benzaldehyde. Quinoline ring has therapeutic and biological activities whereas, phenols have antiseptic and disinfectants activities and are used in the preparation of dyes, bakelite and drugs. The present study is planned to check the effect of the counter anions on the type and geometry of the isolated copper(II)- complexes as well as the ligational behavior of the phenolic hydrazone; 4-[(2-(4,8-dimethylquinolin-2-yl)hydrazono)methyl] benzene-1,3-diol; (H<sub>2</sub>L).</p> <p>Results</p> <p>A phenolic quinolyl hydrazone (H<sub>2</sub>L) was allowed to react with various copper(II)- salts (Cl‾, Br‾, NO<sub>3</sub>‾, ClO<sub>4</sub>‾, AcO‾, SO<sub>4</sub><sup>2-</sup>). The reactions afforded dimeric complexes (ClO<sub>4</sub>‾, AcO‾ ), a binuclear complex (NO<sub>3</sub>‾ ) and mononuclear complexes (the others; Cl‾, Br‾, SO<sub>4</sub><sup>2-</sup>). The isolated copper(II)- complexes have octahedral, square pyramid and square planar geometries. Also, they reflect the strong coordinating ability of NO<sub>3</sub>‾, Cl‾, Br‾, AcO‾ and SO<sub>4</sub><sup>2- </sup>anions. Depending on the type of the anion, the ligand showed three different modes of bonding <it>viz</it>. (NN)<sup>0 </sup>for the mononuclear complexes (<b>3, 4, 6</b>), (NO)<sup>- </sup>with O- bridging for the dimeric complexes (<b>1, 5</b>) and a mixed mode [(NN)<sup>0 </sup>+ (NO)<sup>- </sup>with O- bridging] for the binuclear nitrato- complex (<b>2</b>).</p> <p>Conclusion</p> <p>The ligational behavior of the phenolic hydrazone (H<sub>2</sub>L) is highly affected by the type of the anion. The isolated copper(II)- complexes reflect the strong coordinating power of the SO<sub>4</sub><sup>2-</sup>, AcO‾, Br‾, Cl‾ and NO<sub>3</sub>‾ anions. Also, they reflect the structural diversity (octahedral, square pyramid and square planar) depending on the type of the counter anion.</p

    The ligational behavior of an isatinic quinolyl hydrazone towards copper(II)- ions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring. Quinoline ring has therapeutic and biological activities whereas, the indole ring occurs in Jasmine flowers and Orange blossoms. As a ligand, the isatin moiety is potentially ambidentate and can coordinate the metal ions either through its lactam or lactim forms. In a previous study, the ligational behavior of a phenolic quinolyl hydrazone towards copper(II)- ions has been studied. As continuation of our interest, the present study is planned to check the ligational behavior of an isatinic quinolyl hydrazone.</p> <p>Results</p> <p>New homo- and heteroleptic copper(II)- complexes were obtained from the reaction of an isatinic quinolyl hydrazone (HL) with several copper(II)- salts <it>viz. </it>Clˉ, Brˉ, NO<sub>3</sub>ˉ, ClO<sub>4</sub><sup>-</sup>, SO<sub>4</sub><sup>2- </sup>and AcO<sup>-</sup>. The obtained complexes have O<sub>h</sub>, T<sub>d </sub>and D<sub>4h</sub>- symmetry and fulfill the strong coordinating ability of Clˉ, Brˉ, NO<sub>3</sub>ˉ and SO<sub>4</sub><sup>2- </sup>anions. Depending on the type of the anion, the ligand coordinates the copper(II)- ions either through its lactam (NO<sub>3</sub>ˉ and ClO<sub>4</sub><sup>-</sup>) or lactim (the others) forms.</p> <p>Conclusion</p> <p>The effect of anion for the same metal ion is obvious from either the geometry of the isolated complexes (O<sub>h</sub>, T<sub>d </sub>and D<sub>4h</sub>) or the various modes of bonding. Also, the obtained complexes fulfill the strong coordinating ability of Clˉ, Brˉ, NO<sub>3</sub>ˉ and SO<sub>4</sub><sup>2- </sup>anions in consistency with the donor ability of the anions. In case of copper(II)- acetate, a unique homoleptic complex (<b>5</b>) was obtained in which the AcO<sup>- </sup>anion acts as a base enough to quantitatively deprotonate the hydrazone. The isatinic hydrazone uses its lactim form in most complexes.</p
    corecore