413 research outputs found

    Jesi inaugura l’urbanistica di Bernardo Secchi

    Get PDF
    Il testo descrive i caratteri salienti del piano regolatore per il Comune di Jesi del 1987 indicandone i caratteri innovativi e il ruolo svolto con riferimento all'urbanistica di Bernardo Secchi e, più in generale, all'urbanistica italiana

    Physical and Aerodynamic Characterization of Particle Clusters at Sakurajima Volcano (Japan)

    Get PDF
    The process of particle aggregation significantly affects ash settling dynamics associated with volcanic explosive eruptions. Several experiments have been carried out to investigate the physics of ash aggregation and dedicated numerical schemes have been developed to produce more accurate forecasting of ash dispersal and sedimentation. However, numerical description of particle aggregation is complicated by the lack of complete datasets on natural samples required for model validation and calibration. Here we present a first comprehensive dataset for the internal structure, aerodynamical properties (e.g., size, density, terminal velocity) and grain size of constituting particles of a variety of aggregate types collected in the natural laboratory of Sakurajima Volcano (Japan). Even though the described particle clusters represent the most common types of aggregates associated with ash-rich fallouts, they are of difficult characterization due to the very low potential of preservation in tephra-fallout deposits. Properties were, therefore, derived based on a combination of high-resolution-high-speed videos of tephra fallout, scanning electron microscope analysis of aggregates collected on adhesive paper and analysis of tephra samples collected in dedicated trays. Three main types of particle clusters were recognized and quantitively characterized: cored clusters (PC3), coated particles (PC2), and ash clusters (PC1) (in order of abundance). A wide range of terminal velocities (0.5–4 m/s) has been observed for these aggregates, with most values varying between 1 and 2 m/s, while aggregate size varies between 200 and 1,200 Âµm. PC1, PC2, and PC3 have densities between 250 and 500, 1,500 and 2,000, and 500 and 1,500 kg/m3, respectively. The size of the aggregate core, where present, varies between 200 and 750 Âµm and increases with aggregate size. Grain size of tephra samples was deconvoluted into a fine and a coarse Gaussian subpopulation, well correlated with the grain size of shells and of the internal cores of aggregates, respectively. This aspect, together with the revealed abundance of PC3 aggregates, reconciles the presence of a large amount of fine ash (aggregate shells) with coarse ash (aggregate cores) and better explains the grain size distribution bimodality, the high settling velocity with respect to typical PC1 velocities and the low settling velocities of large aggregates with respect to typical PC2 velocity. Furthermore, ash forming the aggregates was shown to be always finer than 45 Âµm, confirming the key role played by aggregation processes in fine ash deposition at Sakurajima

    Generalised Factorial Moments and QCD Jets

    Full text link
    { In this paper we present a natural and comprehensive generalisation of the standard factorial moments (\clFq) analysis of a multiplicity distribution. The Generalised Factorial Moments are defined for all qq in the complex plane and, as far as the negative part of its spectrum is concerned, could be useful for the study of infrared structure of the Strong Interactions Theory of high energy interactions (LEP multiplicity distribution under the Z0{\cal Z}_0). The QCD calculation of the Generalised Factorial Moments for negative qq is performed in the double leading log accuracy and is compared to OPAL experimental data. The role played by the infrared cut-off of the model is discussed and illustrated with a Monte Carlo calculation. }Comment: 11pages 4 figures uuencode, LATEC, INLN 94/

    A simple sum rule for the thermal gluon spectral function and applications

    Full text link
    In this paper, we derive a simple sum rule satisfied by the gluon spectral function at finite temperature. This sum rule is useful in order to calculate exactly some integrals that appear frequently in the photon or dilepton production rate by a quark gluon plasma. Using this sum rule, we rederive simply some known results and obtain some new results that would be extremely difficult to justify otherwise. In particular, we derive an exact expression for the collision integral that appears in the calculation of the Landau-Pomeranchuk-Migdal effect.Comment: 24 latex pages, 2 postscript figure

    Enhanced thermal production of hard dileptons by 3→23\to 2 processes

    Get PDF
    In the framework of the Hard Thermal Loop effective theory, we calculate the two-loop contributions to hard lepton pair production in a quark-gluon plasma. We show that the result is free of any infrared and collinear singularity. We also recover the known fact that perturbation theory leads to integrable singularities at the location of the threshold for qqˉ→γ∗q\bar{q}\to\gamma^*. It appears that the process calculated here significantly enhances the rate of low mass hard dileptons.Comment: 32 latex pages, 14 postscript figure
    • …
    corecore