6 research outputs found
Field-Induced Electron Emission from Nanoporous Carbons
Influence of fabrication technology on field electron emission properties of nanoporous carbon (NPC) was investigated. Samples of NPC derived from different carbides via chlorination at different temperatures demonstrated similar low-field emission ability with threshold electric field 2-3 V/μm. This property correlated with presence of nanopores with characteristic size 0.5–1.2 nm, determining high values of specific surface area (>800 m2/g) of the material. In most cases, current characteristics of emission were approximately linear in Fowler-Nordheim coordinates (excluding a low-current part near the emission threshold), but the plots’ slope angles were in notable disagreement with the known material morphology and electronic properties, unexplainable within the frames of the classical emission theory. We suggest that the actual emission mechanism for NPC involves generation of hot electrons at internal boundaries and that emission centers may be associated with relatively large (20–100 nm) onion-like particles observed in many microscopic images. Such particles can serve two functions: to provide additional “internal” enhancement of the electric field and to inhibit relaxation of hot charge carriers due to the “phonon bottleneck” effect
Orbitron-type vacuum gauge with nanocarbon field cathode
A novel electron–optical scheme of ionization-type vacuum gauge is proposed that allows the use of field-emission nanocarbon cathodes. The developed gauge satisfies the requirements imposed by possible utilization in on-board satellite equipment: low mass, size and energy consumption, low turn-on time, etc. High efficiency and sensitivity of the sensor are achieved by the use of an electrostatic trap for accumulation of electrons ionizing the gas molecules. Magnetic field was not used for mass economy reason and to avoid possible influence onto other on-board equipment. The main problem solved in the work originated from the intrinsic contradiction between the aims of achieving long-term confinement of electrons in the trap and focusing of the applied electric field at the cathode, the latter being necessary to utilize the phenomenon of field-induced emission. Experimental tests were performed with two prototype devices realizing different versions the electron-scheme design, viability of both developed schemes has been confirmed
Low-Field Electron Emission Capability of Thin Films on Flat Silicon Substrates: Experiments with Mo and General Model for Refractory Metals and Carbon
Herein, we describe a study of the phenomenon of field-induced electron emission from thin films deposited on flat Si substrates. Films of Mo with an effective thickness of 6-10 nm showed room-temperature low-field emissivity; a 100 nA current was extracted at macroscopic field magnitudes as low as 1.4-3.7 V/mu m. This result was achieved after formation treatment of the samples by combined action of elevated temperatures (100-600 degrees C) and the electric field. Morphology of the films was assessed by AFM, SEM, and STM/STS methods before and after the emission tests. The images showed that forming treatment and emission experiments resulted in the appearance of numerous defects at the initially continuous and smooth films; in some regions, the Mo layer was found to consist of separate nanosized islets. Film structure reconstruction (dewetting) was apparently induced by emission-related factors, such as local heating and/or ion irradiation. These results were compared with our previous data obtained in experiments with carbon islet films of similar average thickness deposited onto identical substrates. On this basis, we suggest a novel model of emission mechanism that might be common for thin films of carbon and refractory metals. The model combines elements of the well-known patch field, multiple barriers, and thermoelectric models of low-macroscopic-field electron emission from electrically nanostructured heterogeneous materials
Field-induced electron emission from nanoporous carbon of various types
The influence of fabrication technology on field electron emission properties of nanoporous carbon (NPC) has been investigated. Samples of NPC derived from different carbides via chlorination at different temperatures demonstrated similar low-field emission ability with the threshold electric field strength of 2–3 V/μm. This property correlated with the presence of nanopores with the characteristic size of 0.5–1.2 nm determining high values of specific surface area (more than 800 m2/g) of the material. In most cases, voltage–current characteristics of emission were approximately linear in Fowler–Nordheim (FN) coordinates (excluding the low-current part near the emission threshold), but the plot slope angles were in notable disagreement with the known material morphology and electronic properties, and this could not be explained within the frames of FN emission theory. We suggest that the actual emission mechanism for NPC involves hot electrons generated at internal boundaries, and that emission centers may be associated with relatively large (20–100 nm) onion-like particles observed in many microscopy images
Electron spectrometer for studying field-induced emission from nanostructured objects
A novel electron spectrometer has been designed to study low-voltage field-induced emission of nanostructures such as nanoporous carbon, nanotubes, nanodiamond and other carbon structures. The estimated high resolving power of the device is mainly achieved by using an original energy analyzer of high energy dispersion and by retarding the electron beam by the factor of tens and hundreds in terms of energy. The analyzer pass energy governs the absolute energy resolution ΔЕ of the spectrometer; ΔЕ value varies approximately in the range of 10meV<ΔЕ< 300meV. There are three different working modes adapted for emission of widely variable current. The minimal emission current at which energy analysis is still possible is approximately 0.1nA. The spectrometer working modes were tested experimentally using a thermoemitter as the test object. The study then proved that the recorded spectra reflected physical phenomena taking place on the emitter surface
A Blueprint for the Synthesis and Characterization of Thiolated Graphene
Graphene derivatization to either engineer its physical and chemical properties or overcome the problem of the facile synthesis of nanographenes is a subject of significant attention in the nanomaterials research community. In this paper, we propose a facile and scalable method for the synthesis of thiolated graphene via a two-step liquid-phase treatment of graphene oxide (GO). Employing the core-level methods, the introduction of up to 5.1 at.% of thiols is indicated with the simultaneous rise of the C/O ratio to 16.8. The crumpling of the graphene layer upon thiolation without its perforation is pointed out by microscopic and Raman studies. The conductance of thiolated graphene is revealed to be driven by the Mott hopping mechanism with the sheet resistance values of 2.15 kΩ/sq and dependable on the environment. The preliminary results on the chemiresistive effect of these films upon exposure to ethanol vapors in the mix with dry and humid air are shown. Finally, the work function value and valence band structure of thiolated graphene are analyzed. Taken together, the developed method and findings of the morphology and physics of the thiolated graphene guide the further application of this derivative in energy storage, sensing devices, and smart materials