77 research outputs found

    Role of the Berry curvature on BCS-type superconductivity in two-dimensional materials

    Full text link
    We theoretically investigate how the Berry curvature, which arises in multi-band structures when the electrons can be described by an effective single-band Hamiltonian, affects the superconducting properties of two-dimensional electronic systems. Generically the Berry curvature is coupled to electric fields beyond those created by the periodic crystal potential. A potential source of such electric fields, which vary slowly on the lattice scale, is the mutual interaction between the electrons. We show that the Berry curvature provides additional terms in the Hamiltonian describing interacting electrons within a single band. When these terms are taken into account in the framework of the usual BCS weak-coupling treatment of a generic attractive interaction that allows for the formation of Cooper pairs, the coupling constant is modified. In pure singlet and triplet superconductors, we find that the Berry curvature generally lowers the coupling constant and thus the superconducting gap and the critical temperature as a function of doping. From an experimental point of view, a measured deviation from the expected BCS critical temperature upon doping, e.g. in doped two-dimensional transition-metal dichalcogenides, may unveil the strength of the Berry curvature.Comment: 14 pages, 3 figure

    Magnetism, spin texture and in-gap states: Atomic specialization at the surface of oxygen-deficient SrTiO3_3

    Full text link
    Motivated by recent spin- and angular-resolved photoemission (SARPES) measurements performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3_3 in the presence of oxygen vacancies, we explore their spin structure by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic nonmagnetic DFT calculations display Rashba-like spin winding with a splitting of a few meV and when surface magnetism on the Ti ions is in- cluded, bands become spin-split with an energy difference ~100 meV at the Γ\Gamma point, consistent with SARPES findings. While magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. Furthermore, we observe an atomic specialization phenomenon, namely, two types of electronic contributions: one is from Ti atoms neighboring the oxygen vacancies that acquire rather large magnetic moments and mostly create in-gap states; another comes from the partly polarized t2g_{2g} itinerant electrons of Ti atoms lying further away from the oxygen vacancy, which form the two-dimensional electron system and are responsible for the Rashba spin winding and the spin splitting at the Fermi surface.Comment: 6 pages, 4 figures, for Suppl. Mat. please contact first autho

    Bimodal Phase Diagram of the Superfluid Density in LaAlO3/SrTiO3 Revealed by an Interfacial Waveguide Resonator

    Full text link
    We explore the superconducting phase diagram of the two-dimensional electron system at the LaAlO3/SrTiO3 interface by monitoring the frequencies of the cavity modes of a coplanar waveguide resonator fabricated in the interface itself. We determine the phase diagram of the superconducting transition as a function of temperature and electrostatic gating, finding that both the superfluid density and the transition temperature follow a dome shape, but that the two are not monotonically related. The ground state of this 2DES is interpreted as a Josephson junction array, where a transition from long- to short-range order occurs as a function of the electronic doping. The synergy between correlated oxides and superconducting circuits is revealed to be a promising route to investigate these exotic compounds, complementary to standard magneto-transport measurements.Comment: 5 pages, 4 figures and 10 pages of supplementary materia

    Thermal Fluctuations in d-wave Layered Superconductors

    Full text link
    We study the thermal fluctuations of anisotropic order parameters (OP) in layered superconductors. In particular, for copper oxides and a d-wave OP, we present some experimental consequences of fluctuations in the direction normal to the layers. It is shown that the c-axis penetration depth λc\lambda_c can have a "disorder-like" quadratic temperature dependence at low temperature. The fluctuations are analyzed in the framework of a Lawrence-Doniach model with an isotropic Fermi surface. Anisotropies pin the orientation of the OP to the crystallographic axes of the lattice. Then we study an extended t-J model that fits Fermi suface data of bilayers YBCOYBCO and BSCCOBSCCO. This leads to a d-wave OP with two possible orientations and, including the thermal fluctuations, yields the announced temperature dependence of λc\lambda_c. Furthermore a reservoir layer is introduced. It implies a finite density of states at the Fermi energy which is successfully compared to conductance and specific heat measurements.Comment: 21 pages, Latex, 3 uuencoded figure

    Linear colossal magnetoresistance driven by magnetic textures in LaTiO3 thin films on SrTiO3

    Full text link
    Linear magnetoresistance (LMR) is of particular interest for memory, electronics, and sensing applications, especially when it does not saturate over a wide range of magnetic fields. One of its principal origins is local mobility or density inhomogeneities, often structural, which in the Parish-Littlewood theory leads to an unsaturating LMR proportional to mobility. Structural disorder, however, also tends to limit the mobility and hence the overall LMR amplitude. An alternative route to achieve large LMR is via non-structural inhomogeneities which do not affect the zero field mobility, like magnetic domains. Here, linear positive magnetoresistance caused by magnetic texture is reported in \ch{LaTiO3}/\ch{SrTiO3} heterostructures. The LMR amplitude reaches up to 6500\% at 9T. This colossal value is understood by the unusual combination of a very high thin film mobility, up to 40 000 cm2^2/V.s, and a very large coverage of low-mobility regions. These regions correlate with a striped magnetic structure, compatible with a spiral magnetic texture in the \ch{LaTiO3} film, revealed by low temperature Lorentz transmission electron microscopy. These results provide a novel route for the engineering of large-LMR devices

    Diluted Josephson-junction arrays in a magnetic field: phase coherence and vortex glass thresholds

    Get PDF
    The effects of random dilution of junctions on a two-dimensional Josephson-junction array in a magnetic field are considered. For rational values of the average flux quantum per plaquette ff, the superconducting transition temperature vanishes, for increasing dilution, at a critical value xS(f)x_S(f), while the vortex ordering remains stable up to xVL>xSx_{VL}>x_S, much below the value xpx_p corresponding to the geometric percolation threshold. For xVL<x<xp x_{VL}<x<x_p, the array behaves as a zero-temperature vortex-glass. Numerical results for f=1/2f=1/2 from defect energy calculations are presented which are consistent with this scenario.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    LDL Receptor Knock-Out Mice Are a Physiological Model Particularly Vulnerable to Study the Onset of Inflammation in Non-Alcoholic Fatty Liver Disease

    Get PDF
    Non-alcoholic steatohepatitis (NASH) involves steatosis combined with inflammation, which can progress into fibrosis and cirrhosis. Exploring the molecular mechanisms of NASH is highly dependent on the availability of animal models. Currently, the most commonly used animal models for NASH imitate particularly late stages of human disease. Thus, there is a need for an animal model that can be used for investigating the factors that potentiate the inflammatory response within NASH. We have previously shown that 7-day high-fat-high-cholesterol (HFC) feeding induces steatosis and inflammation in both APOE2ki and Ldlr(-/-) mice. However, it is not known whether the early inflammatory response observed in these mice will sustain over time and lead to liver damage. We hypothesized that the inflammatory response in both models is sufficient to induce liver damage over time.APOE2ki and Ldlr(-/-) mice were fed a chow or HFC diet for 3 months. C57Bl6/J mice were used as control.Surprisingly, hepatic inflammation was abolished in APOE2ki mice, while it was sustained in Ldlr(-/-) mice. In addition, increased apoptosis and hepatic fibrosis was only demonstrated in Ldlr(-/-) mice. Finally, bone-marrow-derived-macrophages of Ldlr(-/-) mice showed an increased inflammatory response after oxidized LDL (oxLDL) loading compared to APOE2ki mice.Ldlr(-/-) mice, but not APOE2ki mice, developed sustained hepatic inflammation and liver damage upon long term HFC feeding due to increased sensitivity for oxLDL uptake. Therefore, the Ldlr(-/-) mice are a promising physiological model particularly vulnerable for investigating the onset of hepatic inflammation in non-alcoholic steatohepatitis

    Transition-metal oxides: It takes two to waver

    Full text link
    When the thickness of a LaNiO3 film is reduced to only two unit cells, the material undergoes an abrupt metal-to-insulator transition
    • …
    corecore