14 research outputs found

    On The S-Matrix of Ising Field Theory in Two Dimensions

    Full text link
    We explore the analytic structure of the non-perturbative S-matrix in arguably the simplest family of massive non-integrable quantum field theories: the Ising field theory (IFT) in two dimensions, which may be viewed as the Ising CFT deformed by its two relevant operators, or equivalently, the scaling limit of the Ising model in a magnetic field. Our strategy is that of collider physics: we employ Hamiltonian truncation method (TFFSA) to extract the scattering phase of the lightest particles in the elastic regime, and combine it with S-matrix bootstrap methods based on unitarity and analyticity assumptions to determine the analytic continuation of the 2 to 2 S-matrix element to the complex s-plane. Focusing primarily on the "high temperature" regime in which the IFT interpolates between that of a weakly coupled massive fermion and the E8 affine Toda theory, we will numerically determine 3-particle amplitudes, follow the evolution of poles and certain resonances of the S-matrix, and exclude the possibility of unknown wide resonances up to reasonably high energies.Comment: typos corrected, references added, additional comparison with perturbation theory added. 35 pages, 21 figure

    Large Gauge Symmetries and Asymptotic States in QED

    Full text link
    Large Gauge Transformations (LGT) are gauge transformations that do not vanish at infinity. Instead, they asymptotically approach arbitrary functions on the conformal sphere at infinity. Recently, it was argued that the LGT should be treated as an infinite set of global symmetries which are spontaneously broken by the vacuum. It was established that in QED, the Ward identities of their induced symmetries are equivalent to the Soft Photon Theorem. In this paper we study the implications of LGT on the S-matrix between physical asymptotic states in massive QED. In appose to the naively free scattering states, physical asymptotic states incorporate the long range electric field between asymptotic charged particles and were already constructed in 1970 by Kulish and Faddeev. We find that the LGT charge is independent of the particles' momenta and may be associated to the vacuum. The soft theorem's manifestation as a Ward identity turns out to be an outcome of not working with the physical asymptotic states.Comment: 22 pages, 3 figures, v2: major revisio

    No Particle Production in Two Dimensions: Recursion Relations and Multi-Regge Limit

    Full text link
    We introduce high-energy limits which allow us to derive recursion relations fixing the various couplings of Lagrangians of two-dimensional relativistic quantum field theories with no tree-level particle production in a very straightforward way. The sine-Gordon model, the Bullough-Dodd theory, Toda theories of various kinds and the U(N) non-linear sigma model can all be rediscovered in this way. The results here were the outcome of our explorations at the 2017 Perimeter Institute Winter School.Comment: 20 page

    Line operators in Chern-Simons-Matter theories and Bosonization in Three Dimensions II -Perturbative Analysis and All-loop Resummation

    Full text link
    We study mesonic line operators in Chern-Simons theories with bosonic or fermionic matter in the fundamental representation. In this paper, we elaborate on the classification and properties of these operators using all loop resummation of large NN perturbation theory. We show that these theories possess two conformal line operators in the fundamental representation. One is a stable renormalization group fixed point, while the other is unstable. They satisfy first-order chiral evolution equations, in which a smooth variation of the path is given by a factorized product of two mesonic line operators. The boundary operators on which the lines can end are classified by their conformal dimension and transverse spin, which we compute explicitly at finite 't Hooft coupling. We match the operators in the bosonic and fermionic theories.Comment: 105 pages, 17 figures. v2: extended to mass deformed CS-matter theories, (section 8). Some details about anomalous spin moved to appendix. Typos corrected. JHEP versio

    On the S-matrix of Ising field theory in two dimensions

    No full text
    Abstract We explore the analytic structure of the non-perturbative S-matrix in arguably the simplest family of massive non-integrable quantum field theories: the Ising field theory (IFT) in two dimensions, which may be viewed as the Ising CFT deformed by its two relevant operators, or equivalently, the scaling limit of the Ising model in a magnetic field. Our strategy is that of collider physics: we employ Hamiltonian truncation method (TFFSA) to extract the scattering phase of the lightest particles in the elastic regime, and combine it with S-matrix bootstrap methods based on unitarity and analyticity assumptions to determine the analytic continuation of the 2 → 2 S-matrix element to the complex s-plane. Focusing primarily on the “high temperature” regime in which the IFT interpolates between that of a weakly coupled massive fermion and the E8 affine Toda theory, we will numerically determine 3-particle amplitudes, follow the evolution of poles and certain resonances of the S-matrix, and exclude the possibility of unknown wide resonances up to reasonably high energies

    Exact quantization and analytic continuation

    No full text
    Abstract In this paper we give a streamlined derivation of the exact quantization condition (EQC) on the quantum periods of the Schrödinger problem in one dimension with a general polynomial potential, based on Wronskian relations. We further generalize the EQC to potentials with a regular singularity, describing spherical symmetric quantum mechanical systems in a given angular momentum sector. We show that the thermodynamic Bethe ansatz (TBA) equations that govern the quantum periods undergo nontrivial monodromies as the angular momentum is analytically continued between integer values in the complex plane. The TBA equations together with the EQC are checked numerically against Hamiltonian truncation at real angular momenta and couplings, and are used to explore the analytic continuation of the spectrum on the complex angular momentum plane in examples

    Anyon Scattering from Lightcone Hamiltonian: the Singlet Channel

    Full text link
    We study U(N)U(N) Chern-Simons theory coupled to massive fundamental fermions in the lightcone Hamiltonian formalism. Focusing on the planar limit, we introduce a consistent regularization scheme, identify the counter terms needed to restore relativistic invariance, and formulate scattering theory in terms of unambiguously defined asymptotic states. We determine the 2→22\to 2 planar S-matrix element in the singlet channel by solving the Lippmann-Schwinger equation to all orders, establishing a result previously conjectured in the literatureComment: 33 pages, 9 figure

    Bootstrapping smooth conformal defects in Chern-Simons-matter theories

    No full text
    Abstract The expectation value of a smooth conformal line defect in a CFT is a conformal invariant functional of its path in space-time. For example, in large N holographic theories, these fundamental observables are dual to the open-string partition function in AdS. In this paper, we develop a bootstrap method for studying them and apply it to conformal line defects in Chern-Simons matter theories. In these cases, the line bootstrap is based on three minimal assumptions — conformal invariance of the line defect, large N factorization, and the spectrum of the two lowest-lying operators at the end of the line. On the basis of these assumptions, we solve the one-dimensional CFT on the line and systematically compute the defect expectation value in an expansion around the straight line. We find that the conformal symmetry of a straight defect is insufficient to fix the answer. Instead, imposing the conformal symmetry of the defect along an arbitrary curved line leads to a functional bootstrap constraint. The solution to this constraint is found to be unique

    Line Operators in Chern-Simons-Matter Theories and Bosonization in Three Dimensions

    Full text link
    We study Chern-Simons theories at large NN with either bosonic or fermionic matter in the fundamental representation. The most fundamental operators in these theories are mesonic line operators, the simplest example being Wilson lines ending on fundamentals. We classify the conformal line operators along an arbitrary smooth path as well as the spectrum of conformal dimensions and transverse spins of their boundary operators at finite 't Hooft coupling. These line operators are shown to satisfy first-order chiral evolution equations, in which a smooth variation of the path is given by a factorized product of two line operators. We argue that this equation together with the spectrum of boundary operators are sufficient to uniquely determine the expectation values of these operators. We demonstrate this by bootstrapping the two-point function of the displacement operator on a straight line. We show that the line operators in the theory of bosons and the theory of fermions satisfy the same evolution equation and have the same spectrum of boundary operators.Comment: 12 pages, 3 figures. v2: typos corrected. v3: perturbative checks added; minor improvement
    corecore