3 research outputs found

    Bounds on area and charge for marginally trapped surfaces with cosmological constant

    Full text link
    We sharpen the known inequalities AΛ≤4π(1−g)A \Lambda \le 4\pi (1-g) and A≥4πQ2A\ge 4\pi Q^2 between the area AA and the electric charge QQ of a stable marginally outer trapped surface (MOTS) of genus g in the presence of a cosmological constant Λ\Lambda. In particular, instead of requiring stability we include the principal eigenvalue λ\lambda of the stability operator. For Λ∗=Λ+λ>0\Lambda^{*} = \Lambda + \lambda > 0 we obtain a lower and an upper bound for Λ∗A \Lambda^{*} A in terms of Λ∗Q2 \Lambda^{*} Q^2 as well as the upper bound Q≤1/(2Λ∗) Q \le 1/(2\sqrt{\Lambda^{*}}) for the charge, which reduces to Q≤1/(2Λ) Q \le 1/(2\sqrt{\Lambda}) in the stable case λ≥0\lambda \ge 0. For Λ∗<0\Lambda^{*} < 0 there remains only a lower bound on AA. In the spherically symmetric, static, stable case one of the area inequalities is saturated iff the surface gravity vanishes. We also discuss implications of our inequalities for "jumps" and mergers of charged MOTS.Comment: minor corrections to previous version and to published versio
    corecore