2 research outputs found

    Gibbs Ensemble Monte Carlo for Reactive Force Fields to Determine the Vapor-Liquid Equilibrium of CO<sub>2</sub>and H<sub>2</sub>O

    No full text
    Absorption and reactive properties of fluids in porous media are key to the design and improvement of numerous energy related applications. Molecular simulations of these systems require accurate force fields that capture the involved chemical reactions and have the ability to describe the vapor-liquid equilibrium (VLE). Two new reactive force fields (ReaxFF) for CO2 and H2O are developed, which are capable of not only modeling bond breaking and formation in reactive environments but also predicting their VLEs at saturation conditions. These new force fields include extra terms (ReaxFF-lg) to improve the long-range interactions between the molecules. For validation, we have developed a new Gibbs ensemble Monte Carlo (GEMC-ReaxFF) approach to predict the VLE. Computed VLE data show good agreement with National Institute of Standards and Technology reference data as well as existing nonreactive force fields. This validation proves the applicability of the GEMC-ReaxFF method to test new reactive force fields, and simultaneously it proves the applicability to extend newly developed ReaxFF force fields to other more complex reactive systems.Engineering Thermodynamic

    Reactive Grand-Canonical Monte Carlo Simulations for Modeling Hydration of MgCl<sub>2</sub>

    No full text
    Thermochemical heat-storage applications, based on the reversible endo-/exothermic hydration reaction of salts, are intensively investigated to search for compact heat-storage devices. To achieve a truly valuable storage system, progressively complex salts are investigated. For these salts, the equilibrium temperature and pressure conditions are not always easy to predict. However, these conditions are crucial for the design of thermochemical heat-storage systems. A biased grand-canonical Monte Carlo (GCMC) tool is developed, enabling the study of equilibrium conditions at the molecular level. The GCMC algorithm is combined with reactive force field molecular dynamics (ReaxFF), which allows bond formation within the simulation. The Weeks-Chandler-Andersen (WCA) potential is used to scan multiple trial positions for the GCMC algorithm at a small cost. The most promising trial positions can be selected for recomputation with the more expensive ReaxFF. The developed WCA-ReaxFF-GCMC tool was used to study the hydration of MgCl2·nH2O. The simulation results show a good agreement with experimental and thermodynamic equilibriums for multiple hydration levels. The hydration shows that water, present at the surface of crystalline salt, deforms the surface layers and promotes further hydration of these deformed layers. Additionally, the WCA-ReaxFF-GCMC algorithm can be used to study other, non-TCM-related, reactive sorption processes. Engineering ThermodynamicsProcess and Energ
    corecore