405 research outputs found
Perspectives of Nuclear Physics in Europe: NuPECC Long Range Plan 2010
The goal of this European Science Foundation Forward Look into the future of Nuclear Physics is to bring together
the entire Nuclear Physics community in Europe to formulate a coherent plan of the best way to develop the field in
the coming decade and beyond.<p></p>
The primary aim of Nuclear Physics is to understand the origin, evolution, structure and phases of strongly interacting matter, which constitutes nearly 100% of the visible matter in the universe. This is an immensely important and challenging task that requires the concerted effort of scientists working in both theory and experiment, funding agencies, politicians and the public.<p></p>
Nuclear Physics projects are often “big science”, which implies large investments and long lead times. They need careful forward planning and strong support from policy makers. This Forward Look provides an excellent tool to achieve this. It represents the outcome of detailed scrutiny by Europe’s leading experts and will help focus the views of the scientific community on the most promising directions in the field and create the basis for funding agencies to provide adequate support.<p></p>
The current NuPECC Long Range Plan 2010 “Perspectives of Nuclear Physics in Europe” resulted from consultation
with close to 6 000 scientists and engineers over a period of approximately one year. Its detailed recommendations
are presented on the following pages. For the interested public, a short summary brochure has been produced to
accompany the Forward Look.<p></p>
The New Physics at RHIC. From Transparency to High p Suppression
Heavy ion collisions at RHIC energies (Au+Au collisions at
GeV) exhibit significant new features as compared to
earlier experiments at lower energies. The reaction is characterized by a high
degree of transparency of the collisions partners leading to the formation of a
baryon-poor central region. In this zone, particle production occurs mainly
from the stretching of the color field. The initial energy density is well
above the one considered necessary for the formation of the Quark Gluon Plasma,
QGP. The production of charged particles of various masses is consistent with
chemical and thermal equilibrium. Recently, a suppression of the high
transverse momentum component of hadron spectra has been observed in central
Au+Au collisions. This can be explained by the energy loss experienced by
leading partons in a medium with a high density of unscreened color charges. In
contrast, such high jets are not suppressed in d+Au collisions suggesting
that the high suppression is not due to initial state effects in the
ultrarelativistic colliding nuclei.Comment: 15 pages, 11 figures. to appear in Nucl. Physics A. Invited talk at
'Nucleus-Nucleus Collisions 2003' conference, Mosco
Strange Meson Enhancement in PbPb Collisions
The NA44 Collaboration has measured yields and differential distributions of
K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the
center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A
considerable enhancement of K+ production per pi is observed, as compared to
p+p collisions at this energy. To illustrate the importance of secondary hadron
rescattering as an enhancement mechanism, we compare strangeness production at
the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE
Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Sqrt(s_NN) = 200 GeV
We present charged particle densities as a function of pseudorapidity and
collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For
the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and
N_ch(-4.7<= eta <= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively,
relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair
of participant nucleons is found to increase from peripheral to central
collisions around mid-rapidity. These results constrain current models of
particle production at the highest RHIC energy.Comment: 4 pages, 5 figures; fixed fig. 5 caption; revised text and figures to
show corrected calculation of and ; final version accepted for
publicatio
Charged particle densities from Au+Au collisions at sqrt{s_{NN}}=130 GeV
We present charged particle densities as a function of pseudorapidity and
collision centrality for the 197Au+197Au reaction at sqrt{s_{NN}}=130 GeV. An
integral charged particle multiplicity of 3860+/-300 is found for the 5% most
central events within the pseudorapidity range -4.7 <= eta <= 4.7. At
mid-rapidity an enhancement in the particle yields per participant nucleon pair
is observed for central events. Near to the beam rapidity, a scaling of the
particle yields consistent with the ``limiting fragmentation'' picture is
observed. Our results are compared to other recent experimental and theoretical
discussions of charged particle densities in ultra-relativistic heavy-ion
collisions.Comment: 14 pages, 4 figures; to be published in Phys. Lett.
Measurement of charm production at central rapidity in proton-proton collisions at TeV
The -differential production cross sections of the prompt (B
feed-down subtracted) charmed mesons D, D, and D in the rapidity
range , and for transverse momentum GeV/, were
measured in proton-proton collisions at TeV with the ALICE
detector at the Large Hadron Collider. The analysis exploited the hadronic
decays DK, DK, DD, and their charge conjugates, and was performed on a
nb event sample collected in 2011 with a
minimum-bias trigger. The total charm production cross section at TeV and at 7 TeV was evaluated by extrapolating to the full phase space
the -differential production cross sections at TeV
and our previous measurements at TeV. The results were compared
to existing measurements and to perturbative-QCD calculations. The fraction of
cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15,
published version, figures at
http://aliceinfo.cern.ch/ArtSubmission/node/307
Kaon and Pion Production in Central Au+Au Collisions at \sqrt{s_{NN}}=62.4 GeV
Invariant pT spectra and rapidity densities covering a large rapidity
range(-0.1 < y < 3.5) are presented for and mesons from
central Au+Au collisions at = 62.4 GeV. The mid-rapidity yields
of meson particles relative to their anti-particles are found to be close to
unity (, ) while the anti-proton to
proton ratio is . The rapidity dependence of the
ratio is consistent with a small increase towards forward
rapidities while the and ratios show a steep decrease to
0.3 for kaons and 0.022 for protons at . It is observed that
the kaon production relative to its own anti-particle as well as to pion
production in wide rapidity and energy ranges shows an apparent universal
behavior consistent with the baryo-chemical potential, as deduced from the
ratio, being the driving parameter.Comment: Submitted to PLB, 6 journal pages, 7 figure
Signal shapes in multiwire proportional chamber-based TPCs
A large-volume Time Projection Chamber (TPC) is the main tracking and particle identification (PID) detector of the ALICE experiment at the CERN LHC. PID in the TPC is performed via specific energy-loss measurements (dE/dx), which are derived from the average pulse-height distribution of ionization generated by charged-particle tracks traversing the TPC volume. During Runs 1 and 2, until 2018, the gas amplification stage was based on multiwire proportional chambers (MWPC). Signals from the MWPC show characteristic long negative tails after an initial positive peak due to the long ion drift times in the MWPC amplification region. This so-called ion tail can lead to a significant amplitude loss in subsequently measured signals, especially in the high-multiplicity environment of high-energy Pb-Pb collisions, which results in a degradation of the dE/dx resolution. A detailed study of the signal shapes measured with the ALICE TPC with the Ne-CO2 (90-10) and Ar-CO2 (90-10) gas mixtures is presented, and the results are compared with three-dimensional Garfield simulations. The impact of the ion tail on the PID performance is studied employing the ALICE simulation framework and the feasibility of an offline correction procedure to account for the ion tail is demonstrated.publishedVersio
- …
