337 research outputs found

    Reappraising the concept of massive transfusion in trauma.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.INTRODUCTION: The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens of modern trauma care are targeted to the early correction of acute traumatic coagulopathy. The aim of this study was to identify a clinically relevant definition of trauma massive transfusion based on clinical outcomes. We also examined whether the concept was useful in that early prediction of massive transfusion requirements could allow early activation of blood bank protocols. METHODS: Datasets on trauma admissions over a 1 or 2-year period were obtained from the trauma registries of five large trauma research networks. A fractional polynomial was used to model the transfusion-associated probability of death. A logistic regression model for the prediction of massive transfusion, defined as 10 or more units of red cell transfusions, was developed. RESULTS: In total, 5,693 patient records were available for analysis. Mortality increased as transfusion requirements increased, but the model indicated no threshold effect. Mortality was 9% in patients who received none to five PRBC units, 22% in patients receiving six to nine PRBC units, and 42% in patients receiving 10 or more units. A logistic model for prediction of massive transfusion was developed and validated at multiple sites but achieved only moderate performance. The area under the receiver operating characteristic curve was 0.81, with specificity of only 50% at a sensitivity of 90% for the prediction of 10 or more PRBC units. Performance varied widely at different trauma centers, with specificity varying from 48% to 91%. CONCLUSIONS: No threshold for definition exists at which a massive transfusion specifically results in worse outcomes. Even with a large sample size across multiple trauma datasets, it was not possible to develop a transportable and clinically useful prediction model based on available admission parameters. Massive transfusion as a concept in trauma has limited utility, and emphasis should be placed on identifying patients with massive hemorrhage and acute traumatic coagulopathy.Published versio

    Paleomagnetic and Rock Magnetic Analysis of Sediments and Lavas Obtained on IODP Expedition 392 Agulhas Plateau Cretaceous Climate

    Get PDF
    IODP Expedition 392 to the Agulhas Plateau (AP) recovered sedimentary and igneous sequences from four sites (Sites 392-U1579, 392-U1580, 392-U1581, and 392-U1582) ranging in age from the Late Cretaceous to the Pleistocene. The primary objectives of this expedition were to examine the nature of the AP basement, the opening of oceanic gateways, and the evolution of the climate system through the Cretaceous hothouse and into the Cenozoic. A key to achieving these objectives is the development of high-quality age models for the sedimentary and igneous sequences recovered from each site. Shipboard age models were developed using a combination of biostratigraphic age constraints, in addition to magnetostratigraphy. To improve upon the age model, shore-based paleomagnetic analysis of discrete samples was performed on intervals where polarity could not be confidently determined from shipboard archive half measurements, specifically focused on intervals where refined age models help achieve the Expedition objectives. Rock and environmental magnetic analysis was also performed on select discrete samples to characterize changes in magnetic mineralogy and grain size throughout the sedimentary sequence captured in each hole. Results from rock magnetic experiments help assess the reliability of measured magnetic signals and further can be used to say something about paleoenvironmental conditions. Magnetic minerals are responsive to many environmental changes including changes in sediment source, redox, weathering, and paleooceanographic conditions and can be utilized as a powerful tool for investigating past environments. Magnetic mineralogic changes will be connected to results from pore water geochemistry and astronomical tuning to help further understand the processes behind the observed changes. Here, we will present on the updated magnetostratigraphy and preliminary rock and environmental magnetic analyses

    Trauma induced coagulopathy is limited to only one out of four shock induced endotheliopathy (SHINE) phenotypes among moderate-severely injured trauma patients: an exploratory analysis

    Get PDF
    Background: Trauma induced coagulopathy remains to be an important cause of high transfusion requirements and mortality and shock induced endotheliopathy (SHINE) has been implicated. Methods: European multicenter observational study of adult trauma patients with injury severity score ≥ 16 arriving within 2 h from injury to the trauma centers. Admission blood samples obtained were used for analysis of the SHINE biomarkers (syndecan-1, soluble thrombomodulin, adrenaline) and extensive analysis of coagulation, -and fibrinolytic factors together with collection of clinical data. Hierarchical clustering of the SHINE biomarkers was used to identify the SHINE phenotypes. Results: The 313 patients clustered into four SHINE phenotypes. Phenotype 2, having the highest glycocalyx shedding, encompassing 22% of the whole cohort, had severe coagulopathy with lower levels of prothrombin, FV, IX, X, XI and severe hyperfibrinolysis with higher plasmin – alpha 2-antiplasmin (PAP) – and tPA levels and lower alpha2 – antiplasmin levels. This phenotype had significantly higher transfusion requirements and higher mortality (39% vs. 23%, 15% and 14%) but similar injury severity score (ISS) compared to the others phenotypes. Conclusions: Hierarchical clustering identified four SHINE phenotype in a cohort of trauma patients. Trauma induced coagulopathy was confined to only one of the SHINE phenotypes, encompassing 22% of the total cohort. This phenotype was characterized by severe hypocoagulability and hyperfibrinolysis, which translated to significantly higher transfusion requirements and higher mortality compared to the other SHINE phenotypes with similar injury severity, warranting further investigation

    Comparison of the predictive performance of the BIG, TRISS, and PS09 score in an adult trauma population derived from multiple international trauma registries

    Get PDF
    The BIG score (Admission base deficit (B), International normalized ratio (I), and Glasgow Coma Scale (G)) has been shown to predict mortality on admission in pediatric trauma patients. The objective of this study was to assess its performance in predicting mortality in an adult trauma population, and to compare it with the existing Trauma and Injury Severity Score (TRISS) and probability of survival (PS09) score. A retrospective analysis using data collected between 2005 and 2010 from seven trauma centers and registries in Europe and the United States of America was performed. We compared the BIG score with TRISS and PS09 scores in a population of blunt and penetrating trauma patients. We then assessed the discrimination ability of all scores via receiver operating characteristic (ROC) curves and compared the expected mortality rate (precision) of all scores with the observed mortality rate. In total, 12,206 datasets were retrieved to validate the BIG score. The mean ISS was 15 ± 11, and the mean 30-day mortality rate was 4.8%. With an AUROC of 0.892 (95% confidence interval (CI): 0.879 to 0.906), the BIG score performed well in an adult population. TRISS had an area under ROC (AUROC) of 0.922 (0.913 to 0.932) and the PS09 score of 0.825 (0.915 to 0.934). On a penetrating-trauma population, the BIG score had an AUROC result of 0.920 (0.898 to 0.942) compared with the PS09 score (AUROC of 0.921; 0.902 to 0.939) and TRISS (0.929; 0.912 to 0.947). The BIG score is a good predictor of mortality in the adult trauma population. It performed well compared with TRISS and the PS09 score, although it has significantly less discriminative ability. In a penetrating-trauma population, the BIG score performed better than in a population with blunt trauma. The BIG score has the advantage of being available shortly after admission and may be used to predict clinical prognosis or as a research tool to risk stratify trauma patients into clinical trial

    Shock-Driven Endotheliopathy in Trauma Patients Is Associated with Leucocyte Derived Extracellular Vesicles

    Get PDF
    Endotheliopathy following trauma is associated with poor outcome, but the underlying mechanisms are unknown. This study hypothesized that an increased extracellular vesicle (EV) concentration is associated with endotheliopathy after trauma and that red blood cell (RBC) transfusion could further enhance endotheliopathy. In this post hoc sub study of a multicentre observational trial, 75 trauma patients were stratified into three groups based on injury severity score or shock. In patient plasma obtained at hospital admission and after transfusion of four RBC transfusions, markers for endotheliopathy were measured and EVs were labelled with anti CD41 (platelet EVs), anti CD235a (red blood cell EVs), anti CD45 (leucocyte EVs), anti CD144 (endothelial EVs) or anti CD62e (activated endothelial EVs) and EV concentrations were measured with flow cytometry. Statistical analysis was performed by a Kruskall Wallis test with Bonferroni correction or Wilcoxon rank test for paired data. In patients with shock, syndecan-1 and von Willebrand Factor (vWF) were increased compared to patients without shock. Additionally, patients with shock had increased red blood cell EV and leucocyte EV concentrations compared to patients without shock. Endotheliopathy markers correlated with leucocyte EVs (ρ = 0.263, p = 0.023), but not with EVs derived from other cells. Injury severity score had no relation with EV release. RBC transfusion increased circulating red blood cell EVs but did not impact endotheliopathy. In conclusion, shock is (weakly) associated with EVs from leucocytes, suggesting an immune driven pathway mediated (at least in part) by shock

    Viscoelastic haemostatic assay augmented protocols for major trauma haemorrhage (ITACTIC): a randomized, controlled trial

    Get PDF
    Purpose: Contemporary trauma resuscitation prioritizes control of bleeding and uses major haemorrhage protocols (MHPs) to prevent and treat coagulopathy. We aimed to determine whether augmenting MHPs with Viscoelastic Haemostatic Assays (VHA) would improve outcomes compared to Conventional Coagulation Tests (CCTs). Methods: This was a multi-centre, randomized controlled trial comparing outcomes in trauma patients who received empiric MHPs, augmented by either VHA or CCT-guided interventions. Primary outcome was the proportion of subjects who, at 24 h after injury, were alive and free of massive transfusion (10 or more red cell transfusions). Secondary outcomes included 28-day mortality. Pre-specified subgroups included patients with severe traumatic brain injury (TBI). Results: Of 396 patients in the intention to treat analysis, 201 were allocated to VHA and 195 to CCT-guided therapy. At 24 h, there was no difference in the proportion of patients who were alive and free of massive transfusion (VHA: 67%, CCT: 64%, OR 1.15, 95% CI 0.76–1.73). 28-day mortality was not different overall (VHA: 25%, CCT: 28%, OR 0.84, 95% CI 0.54–1.31), nor were there differences in other secondary outcomes or serious adverse events. In pre-specified subgroups, there were no differences in primary outcomes. In the pre-specified subgroup of 74 patients with TBI, 64% were alive and free of massive transfusion at 24 h compared to 46% in the CCT arm (OR 2.12, 95% CI 0.84–5.34). Conclusion: There was no difference in overall outcomes between VHA- and CCT-augmented-major haemorrhage protocols
    corecore