953 research outputs found
Recommended from our members
MMP9 Processing of HSPB1 Regulates Tumor Progression
Matrix metalloproteinases regulate pathophysiological events by processing matrix proteins and secreted proteins. Previously, we demonstrated that soluble heat shock protein B1 (HSPB1) is released primarily from endothelial cells (ECs) and regulates angiogenesis via direct interaction with vascular endothelial growth factor (VEGF). Here we report that MMP9 can cleave HSPB1 and release anti-angiogenic fragments, which play a key role in tumorprogression. We mapped the cleavage sites and explored their physiological relevance during these processing events. HSPB1 cleavage by MMP9 inhibited VEGF-induced ECs activation and the C-terminal HSPB1 fragment exhibited more interaction with VEGF than did full-length HSPB1. HSPB1 cleavage occurs during B16F10 lung progression in wild-type mice. Also, intact HSPB1 was more detected on tumor endothelium of MMP9 null mice than wild type mice. Finally, we confirmed that secretion of C-terminal HSPB1 fragment was significantly inhibited lung and liver tumor progression of B16F10 melanoma cells and lung tumor progression of CT26 colon carcinoma cells, compared to full-length HSPB1. These data suggest that in vivo MMP9-mediated processing of HSPB1 acts to regulate VEGF-induced ECs activation for tumor progression, releasing anti-angiogenic HSPB1 fragments. Moreover, these findings potentially explain an anti-target effect for the failure of MMP inhibitors in clinical trials, suggesting that MMP inhibitors may have pro-tumorigenic effects by reducing HSPB1 fragmentation
Erythropoietin Attenuates Brain Injury, Subventricular Zone Expansion, and Sensorimotor Deficits in Hypoxic-Ischemic Neonatal Rats
The aim of this study was to investigate the effect of erythropoietin (EPO) on histological brain injury, subventricular zone (SVZ) expansion, and sensorimotor function deficits induced by hypoxia-ischemia (HI) in newborn rat pups. Seven-day-old male rat pups were divided into six groups: normoxia control, normoxia EPO, hypoxia control, hypoxia EPO, HI control, and HI EPO group. Sham surgery or HI was performed in all animals. HI was induced by ligation of the right common carotid artery followed by 90 min of hypoxia with 8% oxygen. Recombinant human EPO 3 U/g or saline was administered intraperitoneally, immediately, at 24- and 48-hr after insult. At two weeks after insult, animals were challenged with cylinder-rearing test for evaluating forelimb asymmetry to determine sensorimotor function. All animals were then sacrificed for volumetric analysis of the cerebral hemispheres and the SVZ. The saline-treated HI rats showed marked asymmetry by preferential use of the non-impaired, ipsilateral paw in the cylinder-rearing test. Volumetric analysis of brains revealed significantly decreased preserved ipsilateral hemispheric volume and increased ipsilateral SVZ volume compared with the sham-operated animals. Treatment of EPO significantly improved forelimb asymmetry and preserved ipsilateral hemispheric volume along with decreased expansion of ipsilateral SVZ following HI compared to the saline-treated HI rats. These results support the use of EPO as a candidate drug for treatment of neonatal hypoxic-ischemic brain damage
Chemical stability of active ingredients in diluted veterinary disinfectant solutions under simulated storage conditions
Introduction: The product labels of veterinary disinfectants specify their expiration dates to prevent the use of outdated products, as these may result in disinfection and biosecurity failures during outbreak situations. However, a clear standard for the storage conditions of diluted disinfectant solutions has not yet been established, and the effects of storage conditions have scarcely been investigated. To fill this research gap, our study examined the stability of the active ingredients of diluted veterinary disinfectants based on their change in concentrations when stored at various temperatures for various time periods.Methods: Twenty veterinary disinfectants effective against either foot-and-mouth disease or avian influenza viruses were selected. The disinfectants were diluted to effective concentrations following the manufacturerâs instructions. Using selective analytical techniques, the concentrations of the active ingredients of the samples that had been stored for varying intervals at different temperatures (4, 20, 30, and 45°C) were determined. These samples included soaps and detergents, acids, oxidizing agents, aldehydes, and copper compounds. The active ingredient concentrations of two of the samples were determined following freezing/thawing cycle, to establish their stability when exposed to simulated winter conditions.Results: Our results showed that most of the active ingredients had concentrations of 90% or greater of their initial concentrations, indicating â„90% stability over a 21-day period under the experimental storage conditions. However, there were some exceptions. Glutaraldehyde, formaldehyde, and malic acid are over 90% stable at †30°C for 21 days, but their concentrations decreased to below 90% of their initial concentrations at 45°C, indicating a decline in stability when stored at 45°C for 21 days. The concentrations of potassium peroxymonosulfate and peracetic acid rapidly declined with increasing time and temperature to less than 90% of their initial concentrations.Discussion: Based on our findings, we propose that diluted disinfectant solutions should preferably be prepared daily. However, if the daily preparation of a diluted disinfectant solution is not feasible, then our results can be used as a reference, providing basic scientific data on the chemical stability of diluted disinfectant solutions commonly used in the veterinary field, thus indicating suitable storage conditions
Phonon-suppressing intermolecular adhesives : catechol-based broadband organic THz generators
Solid-state molecular phonons play a crucial role in the performance of diverse photonic and optoelectronic devices. In this work, new organic terahertz (THz) generators based on a catechol group that acts as a phonon suppressing intermolecular adhesive are developed. The catechol group is widely used in mussel-inspired mechanical adhesive chemistry. Newly designed organic electro-optic crystals consist of catechol-based nonlinear optical 4-(3,4-dihydroxystyryl)-1-methylpyridinium (DHP) cations and 4-(trifluoromethyl)benzenesulfonate anions (TFS), which both have multiple interionic interaction capability. Interestingly, compared to benchmark organic crystals for THz generators, DHP-TFS crystals concomitantly achieve top level values of the lowest void volume and the highest crystal density, resulting in an exceptionally small amplitude of solid-state molecular phonons. Simultaneously achieving small molecular phonon amplitude, large optical nonlinearity and good phase matching at infrared optical pump wavelengths, DHP-TFS crystals are capable of generating broadband THz waves of up to 16 THz with high optical-to-THz conversion efficiency; one order of magnitude higher than commercial inorganic THz generators
Fermentation by Lactobacillus enhances anti-inflammatory effect of Oyaksungisan on LPS-stimulated RAW 264.7 mouse macrophage cells
<p>Abstract</p> <p>Background</p> <p>Oyaksungisan (OY) has been used as a traditional drug in east-Asian countries. However, its effect on inflammation still remains unknown. In this study, to provide insight into the biological effects of OY and OY fermented by <it>Lactobacillus</it>, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in the RAW 264.7 murine macrophage cells.</p> <p>Methods</p> <p>The investigation was focused on whether OY and fermented OYs could inhibit the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin (PG) E<sub>2 </sub>as well as the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, interleukin (IL)-6, nuclear factor (NF)-ÎșB and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells.</p> <p>Results</p> <p>We found that OY inhibits a little LPS-induced NO, PGE<sub>2</sub>, TNF-α and IL-6 productions as well as the expressions of iNOS and COX-2. Interestingly, the fermentation significantly increased its inhibitory effect on the expression of all pro-inflammatory mediators. Furthermore, the fermented OYs exhibited elevated inhibition on the translocation of NF-ÎșB p65 through reduced IÎșBα degradation as well as the phosphorylations of extracellular signal-regulated kinase (ERK), p38 and c-Jun NH<sub>2</sub>-terminal kinase (JNK) MAPKs than untreated control or original OY.</p> <p>Conclusions</p> <p>Finally, the fermentation by <it>Lactobacillus </it>potentiates the anti-inflammatory effect of OY by inhibiting NF-ÎșB and MAPK activity in the macrophage cells.</p
Switchable Gene Expression in Escherichia coli Using a Miniaturized Photobioreactor
We present a light-switchable gene expression system for both inducible and switchable control of gene expression at a single cell level in Escherichia coli using a previously constructed light-sensing system. The lambda cl repressor gene with an LVA degradation tag was expressed under the control of the ompC promoter on the chromosome. The green fluorescent protein (GFP) gene fused to a lambda repressor-repressible promoter was used as a reporter. This light-switchable system allows rapid and reversible induction or repression of expression of the target gene at any desired time. This system also ensures homogenous expression across the entire cell population. We also report the design of a miniaturized photobioreactor to be used in combination with the light-switchable gene expression system. The miniaturized photobioreactor helps to reduce unintended induction of the light receptor due to environmental disturbances and allows precise control over the duration of induction. This system would be a good tool for switchable, homogenous, strong, and highly regulatable expression of target genes over a wide range of induction times. Hence, it could be applied to study gene function, optimize metabolic pathways, and control biological systems both spatially and temporally.open0
Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-
We report a measurement of time-integrated CP-violation asymmetries in the
resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II
data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar
collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come
from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production
flavor of the charm meson is determined by the charge of the accompanying pion.
We apply a Dalitz-amplitude analysis for the description of the dynamic decay
structure and use two complementary approaches, namely a full Dalitz-plot fit
employing the isobar model for the contributing resonances and a
model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We
find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57
(stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry,
consistent with the standard model prediction.Comment: 15 page
- âŠ