26 research outputs found

    Effect of sampling variability on hindcast and measured wave heights - Closure

    No full text

    Wave crest sensor intercomparison study: An overview of WACSIS

    No full text
    The Wave Crest Sensor Intercomparison Study (WACSIS) was designed as a thorough investigation of the statistical distribution of crest heights. Measurements were made in the southern North Sea during the winter of 1997-1998 from the Meetpost Noordwijk in 18 m water depth. The platform was outfitted with several popular wave sensors, including Saab and Marex radars, an EMI laser, a Baylor wave staff and a Vlissingen step gauge. Buoys were moored nearby to obtain directional spectra. Two video cameras viewed the ocean under the wave sensors and their signals were recorded digitally. The data analysis focused on comparisons of the crest height measurements from the various sensors and comparisons of the crest height distributions derived from the sensors and from theories. Some of the sensors had greater than expected energy at high frequencies. Once the measurements were filtered at 0.64 Hz, the Baylor, EMI and Vlissingen crest height distributions matched quite closely, while those from the other sensors were a few percent higher. The Baylor and EMI crest distributions agreed very well with the statistics from second order simulations, while previous parameterizations of the crest height distribution were generally too high. We conclude that crest height distributions derived from second order simulations can be used with confidence in engineering calculations. The data were also used in investigations of crest and trough shapes and the joint height/period distribution

    Wave Crest Sensor Intercomparison Study: An overview of WACSIS

    No full text
    The Wave Crest Sensor Intercomparison Study (WACSIS) was designed as a thorough investigation of the statistical distribution of crest heights. Measurements were made in the southern North Sea during the winter of 1997-1998 from the Meetpost Noordwijk in 18 m water depth. The platform was outfitted with several popular wave sensors, including Saab and Marex radars, an EMI laser, a Baylor wave staff and a Vlissingen step gauge. Buoys were moored nearby to obtain directional spectra. Two video cameras viewed the ocean under the wave sensors and their signals were recorded digitally. The data analysis focused on comparisons of the crest height measurements from the various sensors and comparisons of the crest height distributions derived from the sensors and from theories. Some of the sensors had greater than expected energy at high frequencies. Once the measurements were filtered at 0.64 Hz, the Baylor, EMI and Vlissingen crest height distributions matched quite closely, while those from the other sensors were a few percent higher. The Baylor and EMI crest distributions agreed very well with the statistics from second order simulations, while previous parameterizations of the crest height distribution were generally too high. We conclude that crest height distributions derived from second order simulations can be used with confidence in engineering calculations. The data were also used in investigations of crest and trough shapes and the joint height/period distribution. © 2004 by ASME

    On recording sea surface elevation with accelerometer buoys: lessons from ITOP (2010)

    No full text
    Measurements of significant wave height are made routinely throughout the world’s oceans, but a record of the sea surface elevation (η) is rarely kept. This is mostly due to memory limitations on data, but also, it is thought that buoy measurements of sea surface elevation are not as accurate as wave gauges mounted on stationary platforms. Accurate records of η which contain rogue waves (defined here as an individual wave at least twice the significant wave height) are of great interest to scientists and engineers. Using field data, procedures for tilt correcting and double integrating accelerometer data to produce a consistent record of η are given in this study. The data in this study are from experimental buoys deployed in the recent Impact of Typhoons on the Ocean in the Pacific (ITOP) field experiment which occurred in 2010. The statistics from the ITOP buoys is under that predicted by Rayleigh theory, but matches the distributions of Boccotti and others (Tayfun and Fedele) (Ocean Eng 34:1631-1649, 2007). Rogue waves were recorded throughout the experiment under various sea state conditions. Recommendations, as a result of lessons learned during ITOP, are made for the routine recording of η which may not add significantly to the existing data burden. The hope is that we might one day collect a worldwide database of rogue waves from the existing buoy network, which would progress our understanding of the rogue wave phenomenon and make work at sea safer

    The Making of the Andrea Wave and other Rogues

    No full text
    Unexpectedly large ocean waves or ‘rogues’ are sometimes claimed to be the cause of damage to ships at sea and to offshore structures. While wind-driven wave models are capable of predicting the average characteristics of waves, the maximum height of rogues that may occur is yet unknown. Rogues form in the open ocean through the addition of elemental wave trains or groups and, infrequently, with many elements coming together in phase, producing rogues. Here we perform directional analyses on one of the steepest rogues ever recorded: the Andrea wave. We find that the Andrea wave was close to the breaking-limited height. Analysis of the 72 twenty minute records on the day of the Andrea wave yields encounter return periods of about 21 days for maximally steep waves, while less steep rogues occur about twice daily. An explicit formula is given for the encounter probability, based on the target area. This work answers the critical questions regarding rogues in the design and operation of ships and offshore structures: how high can rogues be and how frequently they occur
    corecore