20 research outputs found

    Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient

    No full text
    The study of brain development in humans is limited by the lack of tissue samples and suitable in vitro models. Here, we model early human neural tube development using human embryonic stem cells cultured in a microfluidic device. The approach, named microfluidic-controlled stem cell regionalization (MiSTR), exposes pluripotent stem cells to signaling gradients that mimic developmental patterning. Using a WNT-activating gradient, we generated a neural tissue exhibiting progressive caudalization from forebrain to midbrain to hindbrain, including formation of isthmic organizer characteristics. Single-cell transcriptomics revealed that rostro-caudal organization was already established at 24 h of differentiation, and that the first markers of a neural-specific transcription program emerged in the rostral cells at 48 h. The transcriptomic hallmarks of rostro-caudal organization recapitulated gene expression patterns of the early rostro-caudal neural plate in mouse embryos. Thus, MiSTR will facilitate research on the factors and processes underlying rostro-caudal neural tube patterning

    Structure of a kinesin-tubulin complex and implications for kinesin motility

    Full text link
    The typical function of kinesins is to transport cargo along microtubules. Binding of ATP to microtubule-attached motile kinesins leads to cargo displacement. To better understand the nature of the conformational changes that lead to the power stroke that moves a kinesin's load along a microtubule, we determined the X-ray structure of human kinesin-1 bound to αβ-tubulin. The structure defines the mechanism of microtubule-stimulated ATP hydrolysis, which releases the kinesin motor domain from microtubules. It also reveals the structural linkages that connect the ATP nucleotide to the kinesin neck linker, a 15-amino acid segment C terminal to the catalytic core of the motor domain, to result in the power stroke. ATP binding to the microtubule-bound kinesin favors neck-linker docking. This biases the attachment of kinesin's second head in the direction of the movement, thus initiating each of the steps taken
    corecore