51 research outputs found
The evolution and distribution of phage ST160 within Salmonella enterica serotype Typhimurium
Salmonellosis is an internationally important disease of mammals and birds. Unique epidemics in New Zealand in the recent past include two Salmonella serovars: Salmonella enterica subsp. enterica serovar Typhimurium definitive type (DT) 160 (S. Typhimurium DT160) and S. Brandenburg. Although not a major threat internationally, in New Zealand S. Typhimurium DT160 has been the most common serovar isolated from humans, and continues to cause significant losses in wildlife. We have identified DNA differences between the first New Zealand isolate of S. Typhimurium DT160 and the genome-sequenced strain, S. Typhimurium LT2. All the differences could be accounted for in one cryptic phage ST64B, and one novel P22-like phage, ST160. The majority of the ST160 genome is almost identical to phage SE1 but has two regions not found in SE1 which are identical to the P22-like phage ST64T, suggesting that ST160 evolved from SE1 via two recombination events with ST64T. All of the New Zealand isolates of DT160 were identical indicating the clonal spread of this particular Salmonella. Some overseas isolates of S. Typhimurium DT160 differed from the New Zealand strain and contained SE1 phage rather than ST160. ST160 was also identified in New Zealand isolates of S. Typhimurium DT74 and S. Typhimurium RDNC-April06 and in S. Typhimurium DT160 isolates from the USA. The emergence of S. Typhimurium DT160 as a significant pathogen in New Zealand is postulated to have occurred due to the sensitivity of the Salmonella strains to the ST160 phage when S. Typhimurium DT160 first arrived. Β© 2010 Cambridge University Press
Culling-Induced Changes in Badger (Meles meles) Behaviour, Social Organisation and the Epidemiology of Bovine Tuberculosis
In the UK, attempts since the 1970s to control the incidence of bovine tuberculosis (bTB) in cattle by culling a wildlife host, the European badger (Meles meles), have produced equivocal results. Culling-induced social perturbation of badger populations may lead to unexpected outcomes. We test predictions from the βperturbation hypothesisβ, determining the impact of culling operations on badger populations, movement of surviving individuals and the influence on the epidemiology of bTB in badgers using data dervied from two study areas within the UK Government's Randomised Badger Culling Trial (RBCT). Culling operations did not remove all individuals from setts, with between 34β43% of badgers removed from targeted social groups. After culling, bTB prevalence increased in badger social groups neighbouring removals, particularly amongst cubs. Seventy individual adult badgers were fitted with radio-collars, yielding 8,311 locational fixes from both sites between November 2001 and December 2003. Home range areas of animals surviving within removed groups increased by 43.5% in response to culling. Overlap between summer ranges of individuals from Neighbouring social groups in the treatment population increased by 73.3% in response to culling. The movement rate of individuals between social groups was low, but increased after culling, in Removed and Neighbouring social groups. Increased bTB prevalence in Neighbouring groups was associated with badger movements both into and out of these groups, although none of the moving individuals themselves tested positive for bTB. Significant increases in both the frequency of individual badger movements between groups and the emergence of bTB were observed in response to culling. However, no direct evidence was found to link the two phenomena. We hypothesise that the social disruption caused by culling may not only increase direct contact and thus disease transmission between surviving badgers, but may also increase social stress within the surviving population, causing immunosuppression and enhancing the expression of disease
Immunogenicity and protective efficacy of mycobacterial DNA vaccines incorporating plasmid-encoded cytokines against Mycobacterium bovis.
DNA-based vaccines, alone or in combination with other sub-unit vaccination regimes, represent an alternative to live mycobacterial vaccines for protective immunization against tuberculosis. Here, we have used a murine immunization or Mycobacterium bovis aerosol challenge model to assess the immunogenicity and protective efficacy of mycobacterial DNA vaccines. Mice that received immunization with DNA constructs encoding M. bovis antigen 85A (Ag85-A) and arget(ESAT-6) produced measurable interferon-gamma (IFN-gamma) responses to CD4(+) T-cell epitope-peptide recall antigens in vitro. The magnitude of these responses was enhanced by co-delivery of a construct encoding murine cytokines (macrophage inhibitory protein (MIP)-1 alpha or interleukin(IL)-7), although they did not the match responses observed in mice that received Bacille Calmette-Guerin(BCG) immunisation. In contrast, DNA priming followed by boosting with modified vaccinia Ankara (MVA) vaccine (expressing M. tuberculosis Ag85-A) invoked higher IFN-gamma levels, with the most immunogenic regime of Ag85 or ESAT or IL-7 prime followed by MVA boost being of commensurate immunogenicity to BCG. Despite this, neither DNA alone nor DNA-prime or MVA boost regimes conferred measurable protection against aerosol challenge with virulent M. bovis. These data highlight both the promise and the shortcomings of new generation subunit tuberculosis vaccines, with particular emphasis on their potential as vaccines against M. bovis
- β¦