6,185 research outputs found

    Determination of the polarization distribution in poled ferroelectric polymer by the thermal pulse method

    Get PDF
    Version of RecordPublishe

    An Efficient Representation of Euclidean Gravity I

    Full text link
    We explore how the topology of spacetime fabric is encoded into the local structure of Riemannian metrics using the gauge theory formulation of Euclidean gravity. In part I, we provide a rigorous mathematical foundation to prove that a general Einstein manifold arises as the sum of SU(2)_L Yang-Mills instantons and SU(2)_R anti-instantons where SU(2)_L and SU(2)_R are normal subgroups of the four-dimensional Lorentz group Spin(4) = SU(2)_L x SU(2)_R. Our proof relies only on the general properties in four dimensions: The Lorentz group Spin(4) is isomorphic to SU(2)_L x SU(2)_R and the six-dimensional vector space of two-forms splits canonically into the sum of three-dimensional vector spaces of self-dual and anti-self-dual two-forms. Consolidating these two, it turns out that the splitting of Spin(4) is deeply correlated with the decomposition of two-forms on four-manifold which occupies a central position in the theory of four-manifolds.Comment: 31 pages, 1 figur

    Structure Modeling of All Identified G Protein–Coupled Receptors in the Human Genome

    Get PDF
    G protein–coupled receptors (GPCRs), encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER) method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(α) root-mean-squared deviation from native of 4.6 Å, with a root-mean-squared deviation in the transmembrane helix region of 2.1 Å. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness and robustness of the in silico models for GPCR functional analysis. All predicted GPCR models are freely available for noncommercial users on our Web site (http://www.bioinformatics.buffalo.edu/GPCR)

    Identification of signaling pathways in early mammary gland development by mouse genetics

    Get PDF
    The mammary gland develops as an appendage of the ectoderm. The prenatal stage of mammary development is hormone independent and is regulated by sequential and reciprocal signaling between the epithelium and the mesenchyme. A number of recent studies using human and mouse genetics, in particular targeted gene deletion and transgenic expression, have identified some of the signals that control specific steps in development. This process involves cell specification and proliferation, reciprocal tissue interactions and cell migration. Since some of these events are recapitulated during tumorigenesis, an understanding of these signaling pathways may contribute to the development of targeted therapies and novel drugs

    Integrated human papillomavirus analysis as an adjunct for triage of atypical cervical cytology

    Get PDF
    published_or_final_versio

    Adaptive Evolutionary Clustering

    Full text link
    In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a static clustering method. In this paper, we introduce a different approach to evolutionary clustering by accurately tracking the time-varying proximities between objects followed by static clustering. We present an evolutionary clustering framework that adaptively estimates the optimal smoothing parameter using shrinkage estimation, a statistical approach that improves a naive estimate using additional information. The proposed framework can be used to extend a variety of static clustering algorithms, including hierarchical, k-means, and spectral clustering, into evolutionary clustering algorithms. Experiments on synthetic and real data sets indicate that the proposed framework outperforms static clustering and existing evolutionary clustering algorithms in many scenarios.Comment: To appear in Data Mining and Knowledge Discovery, MATLAB toolbox available at http://tbayes.eecs.umich.edu/xukevin/affec

    Detection and localization of double compression in MP3 audio tracks

    Get PDF
    In this work, by exploiting the traces left by double compression in the statistics of quantized modified discrete cosine transform coefficients, a single measure has been derived that allows to decide whether an MP3 file is singly or doubly compressed and, in the last case, to devise also the bit-rate of the first compression. Moreover, the proposed method as well as two state-of-the-art methods have been applied to analyze short temporal windows of the track, allowing the localization of possible tampered portions in the MP3 file under analysis. Experiments confirm the good performance of the proposed scheme and demonstrate that current detection methods are useful for tampering localization, thus offering a new tool for the forensic analysis of MP3 audio tracks

    Response Surface Technique for Static Aeroelastic Optimization on a High-Aspect-Ratio Wing

    Get PDF

    Magnetic Catalysis and Quantum Hall Ferromagnetism in Weakly Coupled Graphene

    Full text link
    We study the realization in a model of graphene of the phenomenon whereby the tendency of gauge-field mediated interactions to break chiral symmetry spontaneously is greatly enhanced in an external magnetic field. We prove that, in the weak coupling limit, and where the electron-electron interaction satisfies certain mild conditions, the ground state of charge neutral graphene in an external magnetic field is a quantum Hall ferromagnet which spontaneously breaks the emergent U(4) symmetry to U(2)XU(2). We argue that, due to a residual CP symmetry, the quantum Hall ferromagnet order parameter is given exactly by the leading order in perturbation theory. On the other hand, the chiral condensate which is the order parameter for chiral symmetry breaking generically obtains contributions at all orders. We compute the leading correction to the chiral condensate. We argue that the ensuing fermion spectrum resembles that of massive fermions with a vanishing U(4)-valued chemical potential. We discuss the realization of parity and charge conjugation symmetries and argue that, in the context of our model, the charge neutral quantum Hall state in graphene is a bulk insulator, with vanishing longitudinal conductivity due to a charge gap and Hall conductivity vanishing due to a residual discrete particle-hole symmetry.Comment: 35 page
    corecore