20 research outputs found
Developmental malformation of the corpus callosum: a review of typical callosal development and examples of developmental disorders with callosal involvement
This review provides an overview of the involvement of the corpus callosum (CC) in a variety of developmental disorders that are currently defined exclusively by genetics, developmental insult, and/or behavior. I begin with a general review of CC development, connectivity, and function, followed by discussion of the research methods typically utilized to study the callosum. The bulk of the review concentrates on specific developmental disorders, beginning with agenesis of the corpus callosum (AgCC)—the only condition diagnosed exclusively by callosal anatomy. This is followed by a review of several genetic disorders that commonly result in social impairments and/or psychopathology similar to AgCC (neurofibromatosis-1, Turner syndrome, 22q11.2 deletion syndrome, Williams yndrome, and fragile X) and two forms of prenatal injury (premature birth, fetal alcohol syndrome) known to impact callosal development. Finally, I examine callosal involvement in several common developmental disorders defined exclusively by behavioral patterns (developmental language delay, dyslexia, attention-deficit hyperactive disorder, autism spectrum disorders, and Tourette syndrome)
Planck 2015 results I. Overview of products and scientific results
The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based on data from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds
Recommended from our members
Comparison of Sunyaev-Zel’dovich measurements from Planck and from the Arcminute Microkelvin Imager for 99 galaxy clusters
We present observations and analysis of a sample of 123 galaxy clusters from the 2013 Planck catalogue of Sunyaev-Zel’dovich sources with the Arcminute Microkelvin Imager (AMI), a ground-based radio interferometer. AMI provides an independent measurement with higher angular resolution, 3 arcmin compared to the Planck beams of 5–10 arcmin. The AMI observations thus provide validation of the cluster detections, improved positional estimates, and a consistency check on the fitted ‘size’ (θ_s) and ‘flux’ (Y_tot) parameters in the Generalised Navarro, Frenk and White (GNFW) model. We detect 99 of the clusters. We use the AMI positional estimates to check the positional estimates and error-bars produced by the Planck algorithms PowellSnakes and MMF3. We find that Y_tot values as measured by AMI are biased downwards with respect to the Planck constraints, especially for high Planck-SNR clusters. We perform simulations to show that this can be explained by deviation from the ‘universal’ pressure profile shape used to model the clusters. We show that AMI data can constrain the α and β parameters describing the shape of the profile in the GNFW model for individual clusters provided careful attention is paid to the degeneracies between parameters, but one requires information on a wider range of angular scales than are present in AMI data alone to correctly constrain all parameters simultaneously.The AMI telescope is supported by Cambridge University. YCP and CR acknowledge support from CCT/Cavendish Laboratory and STFC studentships, respectively. YCP and MO acknowledge support from Research Fellowships from Trinity College and Sidney Sussex College, Cambridge, respectively. This work was partially undertaken on the
COSMOS Shared Memory system at DAMTP, University of Cambridge operated on behalf of the STFC DiRAC HPC Facility. This equipment is funded by BIS National E-infrastructure capital grant ST/J005673/1 and STFC grants ST/H008586/1, ST/K00333X/1. CM acknowledges her KICC Fellowship grant funding for the procurement of the cluster used for computational work. In addition, we would like to thank the IOA computing support team for maintaining the cluster.This is the final version of the article. It first appeared from the European Southern Observatory (ESO) via http://dx.doi.org/10.1051/0004-6361/20142418