817 research outputs found

    A new purple sulfur bacterium from saline littoral sediments, Thiorhodotvibrio winogradskyi gen. nov. and sp. nov.

    Get PDF
    Two strains of a new purple sulfur bacterium were isolated in pure culture from the littoral sediment of a saline lake (Mahoney Lake, Canada) and a marine microbial mat from the North Sea island of Mellum, respectively. Single cells were vibrioid-to spirilloid-shaped and motile by means of single polar flagella. Intracellular photosynthetic membranes were of the vesicular type. As photosynthetic pigments, bacteriochlorophyll a and the carotenoids lycopene, rhodopin, anhydrorhodovibrin, rhodovibrin and spirilloxanthin were present. Hydrogen sulfide and elemental sulfur were used under anoxic conditions for phototrophic growth. In addition one strain (06511) used thiosulfate. Carbon dioxide, acetate and pyruvate were utilized by both strains as carbon sources. Depending on the strain propionate, succinate, fumarate, malate, tartrate, malonate, glycerol or peptone may additionally serve as carbon sources in the light. Optimum growth rates were obtained at pH 7.2, 33 °C, 50 mol m-2 s-1 intensity of daylight fluorescent tubes and a salinity of 2.2–3.2% NaCl. During growth on sulfide, up to ten small sulfur globules were formed inside the cells. The strains grew microaerophilic in the dark and exhibited high specific respiration rates. No vitamins were required for growth. The DNA base composition was 61.0–62.4 mol% G+C. The newly isolated bacterium belongs to the family chromatiaceae and is described as a member of a new genus and species, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. with the type strain SSP1, DSM No. 6702

    PainDroid: An android-based virtual reality application for pain assessment

    Get PDF
    Earlier studies in the field of pain research suggest that little efficient intervention currently exists in response to the exponential increase in the prevalence of pain. In this paper, we present an Android application (PainDroid) with multimodal functionality that could be enhanced with Virtual Reality (VR) technology, which has been designed for the purpose of improving the assessment of this notoriously difficult medical concern. Pain- Droid has been evaluated for its usability and acceptability with a pilot group of potential users and clinicians, with initial results suggesting that it can be an effective and usable tool for improving the assessment of pain. Participant experiences indicated that the application was easy to use and the potential of the application was similarly appreciated by the clinicians involved in the evaluation. Our findings may be of considerable interest to healthcare providers, policy makers, and other parties that might be actively involved in the area of pain and VR research

    Rab-GTPase binding effector protein 2 (RABEP2) is a primed substrate for Glycogen Synthase kinase-3 (GSK3)

    Get PDF
    Glycogen synthase kinase-3 (GSK3) regulates many physiological processes through phosphorylation of a diverse array of substrates. Inhibitors of GSK3 have been generated as potential therapies in several diseases, however the vital role GSK3 plays in cell biology makes the clinical use of GSK3 inhibitors potentially problematic. A clearer understanding of true physiological and pathophysiological substrates of GSK3 should provide opportunities for more selective, disease specific, manipulation of GSK3. To identify kinetically favourable substrates we performed a GSK3 substrate screen in heart tissue. Rab-GTPase binding effector protein 2 (RABEP2) was identified as a novel GSK3 substrate and GSK3 phosphorylation of RABEP2 at Ser200 was enhanced by prior phosphorylation at Ser204, fitting the known consensus sequence for GSK3 substrates. Both residues are phosphorylated in cells while only Ser200 phosphorylation is reduced following inhibition of GSK3. RABEP2 function was originally identified as a Rab5 binding protein. We did not observe co-localisation of RABEP2 and Rab5 in cells, while ectopic expression of RABEP2 had no effect on endosomal recycling. The work presented identifies RABEP2 as a novel primed substrate of GSK3, and thus a potential biomarker for GSK3 activity, but understanding how phosphorylation regulates RABEP2 function requires more information on physiological roles of RABEP2

    Carbon storage in soils of Southeastern Nigeria under different management practices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Changes in agricultural practices-notably changes in crop varieties, application of fertilizer and manure, rotation and tillage practices-influence how much and at what rate carbon is stored in, or released from, soils. Quantification of the impacts of land use on carbon stocks in sub-Saharan Africa is challenging because of the spatial heterogeneity of soil, climate, management conditions, and due to the lack of data on soil carbon pools of most common agroecosystems. This paper provides data on soil carbon stocks that were collected at 10 sites in southeastern Nigeria to characterize the impact of soil management practices.</p> <p>Results</p> <p>The highest carbon stocks, 7906-9510 gC m<sup>-2</sup>, were found at the sites representing natural forest, artificial forest and artificial grassland ecosystems. Continuously cropped and conventionally tilled soils had about 70% lower carbon stock (1978-2822 gC m<sup>-2</sup>). Thus, the soil carbon stock in a 45-year old <it>Gmelina </it>forest was 8987 gC m<sup>-2</sup>, whereas the parts of this forest, that were cleared and continuously cultivated for 15 years, had 75% lower carbon stock (1978 gC m<sup>-2</sup>). The carbon stock of continuously cropped and conventionally tilled soils was also 25% lower than the carbon stock of the soil cultivated by use of conservation tillage.</p> <p>Conclusion</p> <p>Introducing conservation tillage practices may reduce the loss of soil carbon stocks associated with land conversion. However, the positive effect of conservation tillage is not comparable to the negative effect of land conversion, and may not result in significant accumulation of carbon in southeastern Nigeria soils.</p

    Recurrent Plasmodium falciparum Malaria Infections in Kenyan Children Diminish T-Cell Immunity to Epstein Barr Virus Lytic but Not Latent Antigens

    Get PDF
    Plasmodium falciparum malaria (Pf-malaria) and Epstein Barr Virus (EBV) infections coexist in children at risk for endemic Burkitt's lymphoma (eBL); yet studies have only glimpsed the cumulative effect of Pf-malaria on EBV-specific immunity. Using pooled EBV lytic and latent CD8+ T-cell epitope-peptides, IFN-γ ELISPOT responses were surveyed three times among children (10 months to 15 years) in Kenya from 2002–2004. Prevalence ratios (PR) and 95% confidence intervals (CI) were estimated in association with Pf-malaria exposure, defined at the district-level (Kisumu: holoendemic; Nandi: hypoendemic) and the individual-level. We observed a 46% decrease in positive EBV lytic antigen IFN-γ responses among 5–9 year olds residing in Kisumu compared to Nandi (PR: 0.54; 95% CI: 0.30–0.99). Individual-level analysis in Kisumu revealed further impairment of EBV lytic antigen responses among 5–9 year olds consistently infected with Pf-malaria compared to those never infected. There were no observed district- or individual-level differences between Pf-malaria exposure and EBV latent antigen IFN-γ response. The gradual decrease of EBV lytic antigen but not latent antigen IFN-γ responses after primary infection suggests a specific loss in immunological control over the lytic cycle in children residing in malaria holoendemic areas, further refining our understanding of eBL etiology

    Memory and synaptic plasticity are impaired by dysregulated hippocampal O-GlcNAcylation

    Get PDF
    O-GlcNAcylated proteins are abundant in the brain and are associated with neuronal functions and neurodegenerative diseases. Although several studies have reported the effects of aberrant regulation of O-GlcNAcylation on brain function, the roles of O-GlcNAcylation in synaptic function remain unclear. To understand the effect of aberrant O-GlcNAcylation on the brain, we used Oga+/- mice which have an increased level of O-GlcNAcylation, and found that Oga+/- mice exhibited impaired spatial learning and memory. Consistent with this result, Oga+/- mice showed a defect in hippocampal synaptic plasticity. Oga heterozygosity causes impairment of both long-term potentiation and long-term depression due to dysregulation of AMPA receptor phosphorylation. These results demonstrate a role for hyper-O-GlcNAcylation in learning and memory.ope

    The luxS mutation causes loosely-bound biofilms in Shewanella oneidensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>luxS </it>gene in <it>Shewanella oneidensis </it>was shown to encode an autoinducer-2 (AI-2)-like molecule, the postulated universal bacterial signal, but the impaired biofilm growth of a <it>luxS </it>deficient mutant could not be restored by AI-2, indicating it might not have a signalling role in this organism.</p> <p>Findings</p> <p>Here, we provide further evidence regarding the metabolic role of a <it>luxS </it>mutation in <it>S. oneidensis</it>. We constructed a <it>luxS </it>mutant and compared its phenotype to a wild type control with respect to its ability to remove AI-2 from the medium, expression of secreted proteins and biofilm formation. We show that <it>S. oneidensis </it>has a cell-dependent mechanism by which AI-2 is depleted from the medium by uptake or degradation at the end of the exponential growth phase. As AI-2 depletion is equally active in the <it>luxS </it>mutant and thus does not require AI-2 as an inducer, it appears to be an unspecific mechanism suggesting that AI-2 for <it>S. oneidensis </it>is a metabolite which is imported under nutrient limitation. Secreted proteins were studied by iTraq labelling and liquid chromatography mass spectrometry (LC-MS) detection. Differences between wild type and mutant were small. Proteins related to flagellar and twitching motility were slightly up-regulated in the <it>luxS </it>mutant, in accordance with its loose biofilm structure. An enzyme related to cysteine metabolism was also up-regulated, probably compensating for the lack of the LuxS enzyme. The <it>luxS </it>mutant developed an undifferentiated, loosely-connected biofilm which covered the glass surface more homogenously than the wild type control, which formed compact aggregates with large voids in between.</p> <p>Conclusions</p> <p>The data confirm the role of the LuxS enzyme for biofilm growth in <it>S. oneidensis </it>and make it unlikely that AI-2 has a signalling role in this organism.</p
    corecore