43 research outputs found

    Polarization due to rotational distortion in the bright star Regulus

    Get PDF
    This is the full published article (retrieved from the 6 months post-publication posting on arXiv) including the Methods and Supplementary Information sections: 33 pages, 10 figures, 8 tablesPolarization in stars was first predicted by Chandrasekhar [1] who calculated a substantial linear polarization at the stellar limb for a pure electron-scattering atmosphere. This polarization will average to zero when integrated over a spherical star but could be detected if the symmetry is broken, for example by the eclipse of a binary companion. Nearly 50 years ago, Harrington and Collins [2] modeled another way of breaking the symmetry and producing net polarization - the distortion of a rapidly rotating hot star. Here we report the first detection of this effect. Observations of the linear polarization of Regulus, with two different high-precision polarimeters, range from +42 parts-per-million (ppm) at a wavelength of 741 nm to -22 ppm at 395 nm. The reversal from red to blue is a distinctive feature of rotation-induced polarization. Using a new set of models for the polarization of rapidly rotating stars we find that Regulus is rotating at 96.5(+0.6/-0.8)% of its critical angular velocity for breakup, and has an inclination greater than 76.5 degrees. The rotation axis of the star is at a position angle of 79.5+/-0.7 degrees. The conclusions are independent of, but in good agreement with, the results of previously published interferometric observations of Regulus [3]. The accurate measurement of rotation in early-type stars is important for understanding their stellar environments [4], and course of their evolution [5].Peer reviewedFinal Accepted Versio

    Positive Psychology in Cancer Care: Bad Science, Exaggerated Claims, and Unproven Medicine

    Get PDF
    Claims of positive psychology about people with cancer enjoy great popularity because they seem to offer scientific confirmation of strongly held cultural beliefs and values. Our goal is to examine critically four widely accepted claims in the positive psychology literature regarding adaptational outcomes among individuals living with cancer. We examine: (1) the role of positive factors, such as a "fighting spirit" in extending the life of persons with cancer; (2) effects of interventions cultivating positive psychological states on immune functioning and cancer progression and mortality; and evidence concerning (3) benefit finding and (4) post-traumatic growth following serious illness such as cancer and other highly threatening experiences. Claims about these areas of research routinely made in the positive psychology literature do not fit with available evidence. We note in particular the incoherence of claims about the adaptational value of benefit finding and post-traumatic growth among cancer patients, and the implausibility of claims that interventions that enhance benefit finding improve the prognosis of cancer patients by strengthening the immune system. We urge positive psychologists to rededicate themselves to a positive psychology based on scientific evidence rather than wishful thinking

    Allelic relationships of flowering time genes in chickpea

    Get PDF
    Flowering time and crop duration are the most important traits for adaptation of chickpea (Cicer arietinum L.) to different agro-climatic conditions. Early flowering and early maturity enhance adaptation of chickpea to short season environments. This study was conducted to establish allelic relationships of the early flowering genes of ICC 16641, ICC 16644 and ICCV 96029 with three known early flowering genes, efl-1 (ICCV 2), ppd or efl-2 (ICC 5810), and efl-3 (BGD 132). In all cases, late flowering was dominant to early-flowering. The results indicated that the efl-1 gene identified from ICCV 2 was also present in ICCV 96029, which has ICCV 2 as one of the parents in its pedigree. ICC 16641 and ICC 16644 had a common early flowering gene which was not allelic to other reported early flowering genes. The new early flowering gene was designated efl-4. In most of the crosses, days to flowering was positively correlated with days to maturity, number of pods per plant, number of seeds per plant and seed yield per plant and negatively correlated or had no correlation with 100-seed weight. The double-pod trait improved grain yield per plant in the crosses where it delayed maturity. The information on allelic relationships of early flowering genes and their effects on yield and yield components will be useful in chickpea breeding for desired phenology

    Inheritance and relationships of flowering time and seed size in kabuli chickpea

    Get PDF
    Flowering time and seed size are the important traits for adaptation in chickpea. Early phenology (time of flowering, podding and maturity) enhance chickpea adaptation to short season environments. Along with a trait of consumer preference, seed size has also been considered as an important factor for subsequent plant growth parameters including germination, seedling vigour and seedling mass. Small seeded kabuli genotype ICC 16644 was crossed with four genotypes (JGK 2, KAK 2, KRIPA and ICC 17109) to study inheritance of flowering time and seed size. The relationships of phenology with seed size, grain yield and its component traits were studied. The study included parents, F1, F2 and F3 of four crosses. The segregation data of F2 indicated flowering time in chickpea was governed by two genes with duplicate recessive epistasis and lateness was dominant to earliness. Two genes were controlling 100-seed weight where small seed size was dominant over large seed size. Early phenology had significant negative or no association (ICC 16644 × ICC 17109) with 100-seed weight. Yield per plant had significant positive association with number of seeds per plant, number of pods per plant, biological yield per plant, 100-seed weight, harvest index and plant height and hence could be considered as factors for seed yield improvement. Phenology had no correlation with yield per se (seed yield per plant) in any of the crosses studied. Thus, present study shows that in certain genetic background it might be possible to breed early flowering genotypes with large seed size in chickpea and selection of early flowering genotypes may not essentially have a yield penalty

    Polarization of Nova Delphini 1967

    No full text

    Polarimetric Observations of Hydrogen Deficient Stars

    No full text

    John of Muris

    No full text

    Moletti, Giuseppe

    No full text
    corecore