1,591 research outputs found

    THE EFFECT OF UPANAHA SWEDA AND VATARI GUGGULU IN THE MANAGEMENT OF JANUSANDHIGATA VATA (KNEE OSTEOARTHRITIS): A COMPARATIVE STUDY

    Get PDF
    Every man derives the happiness and benefit of his life through locomotion i.e., using his joints. For the minute if he loses this power of locomotion he not only feels himself a miserable creature but also becomes a burden both of his family and society. The loss or reduction in his locomotive power is due to dysfunction of the joints causing an impediment to his movements. If not treated in time, the disease makes man disable. Sandhigata Vata is most common articular disorder. It is a type of Vata Vyadhi which mainly occurs in Vriddhavastha, due to Dhatukshaya. Sandhigata Vata can be correlated with osteoarthritis (OA) which is one such chronic, degenerative, inflammatory disease and has a great impact on the quality of the life of an individual. Different modalities of treatment have been explained in the classics to tackle the condition effectively. The present study was aimed to assess clinically the effect of Upanaha Sweda and Vatari Guggulu in the management of Janusandhigata Vata. In this study total 42 patients were divided in 2 groups. In Group A, patients were treated with only Upanaha Sweda and other group patients were treated with Upanaha Sweda and Vatari Guggulu. Results obtained were analyzed for statistical significance which shows group B in which Vatari Guggulu and Upanaha Sweda were given, was more effective in bringing relief in signs and symptoms of Janusandhigata Vata

    Perturbative QCD at non-zero chemical potential: Comparison with the large-Nf limit and apparent convergence

    Full text link
    The perturbative three-loop result for the thermodynamic potential of QCD at finite temperature and chemical potential as obtained in the framework of dimensional reduction is compared with the exact result in the limit of large flavor number. The apparent convergence of the former as well as possibilities for optimization are investigated. Corresponding optimized results for full QCD are given for the case of two massless quark flavors.Comment: REVTEX4, 4 pages, 3 color figures. v2: fig. 3 now includes also lattice data for two-flavor QCD at nonzero chemical potentia

    Shear Viscosity in the O(N) Model

    Full text link
    We compute the shear viscosity in the O(N) model at first nontrivial order in the large N expansion. The calculation is organized using the 1/N expansion of the 2PI effective action (2PI-1/N expansion) to next-to-leading order, which leads to an integral equation summing ladder and bubble diagrams. We also consider the weakly coupled theory for arbitrary N, using the three-loop expansion of the 2PI effective action. In the limit of weak coupling and vanishing mass, we find an approximate analytical solution of the integral equation. For general coupling and mass, the integral equation is solved numerically using a variational approach. The shear viscosity turns out to be close to the result obtained in the weak-coupling analysis.Comment: 37 pages, few typos corrected; to appear in JHE

    Proton Differential Elliptic Flow and the Isospin-Dependence of the Nuclear Equation of State

    Get PDF
    Within an isospin-dependent transport model for nuclear reactions involving neutron-rich nuclei, we study the first-order direct transverse flow of protons and their second-order differential elliptic flow as a function of transverse momentum. It is found that the differential elliptic flow of mid-rapidity protons, especially at high transverse momenta, is much more sensitive to the isospin dependence of the nuclear equation of state than the direct flow. Origins of these different sensitivities and their implications to the experimental determination of the isospin dependence of the nuclear equation of state by using neutron-rich heavy-ion collisions at intermediate energies are discussed.Comment: 15 pages, 6 figures. Phys. Rev. C (2001) in pres

    The pressure of QCD at finite temperatures and chemical potentials

    Full text link
    The perturbative expansion of the pressure of hot QCD is computed here to order g^6ln(g) in the presence of finite quark chemical potentials. In this process all two- and three-loop one-particle irreducible vacuum diagrams of the theory are evaluated at arbitrary T and mu, and these results are then used to analytically verify the outcome of an old order g^4 calculation of Freedman and McLerran for the zero-temperature pressure. The results for the pressure and the different quark number susceptibilities at high T are compared with recent lattice simulations showing excellent agreement especially for the chemical potential dependent part of the pressure.Comment: 35 pages, 6 figures; text revised, one figure replace

    Coherent Phonons in Carbon Nanotubes and Graphene

    Full text link
    We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n+m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.Comment: 48 pages, 41 figure

    Rapidity distribution as a probe for elliptical flow at intermediate energies

    Full text link
    Interplay between the spectator and participant matter in heavy-ion collisions is investigated within isospin dependent quantum molecular dynamics (IQMD) model in term of rapidity distribution of light charged particles. The effect of different types and size rapidity distributions is studied in elliptical flow. The elliptical flow patterns show important role of the nearby spectator matter on the participant zone. This role is further explained on the basis of passing time of the spectator and expansion time of the participant zone. The transition from the in-plane to out-of-plane is observed only when the mid-rapidity region is included in the rapidity bin, otherwise no transition occurs. The transition energy is found to be highly sensitive towards the size of the rapidity bin, while weakly on the type of the rapidity distribution. The theoretical results are also compared with the experimental findings and are found in good agreement.Comment: 8 figure

    Controlled mobility in stochastic and dynamic wireless networks

    Get PDF
    We consider the use of controlled mobility in wireless networks where messages arriving randomly in time and space are collected by mobile receivers (collectors). The collectors are responsible for receiving these messages via wireless transmission by dynamically adjusting their position in the network. Our goal is to utilize a combination of wireless transmission and controlled mobility to improve the throughput and delay performance in such networks. First, we consider a system with a single collector. We show that the necessary and sufficient stability condition for such a system is given by ρ<1 where ρ is the expected system load. We derive lower bounds for the expected message waiting time in the system and develop policies that are stable for all loads ρ<1 and have asymptotically optimal delay scaling. We show that the combination of mobility and wireless transmission results in a delay scaling of Θ([1 over 1−ρ]) with the system load ρ, in contrast to the Θ([1 over (1−ρ)[superscript 2]]) delay scaling in the corresponding system without wireless transmission, where the collector visits each message location. Next, we consider the system with multiple collectors. In the case where simultaneous transmissions to different collectors do not interfere with each other, we show that both the stability condition and the delay scaling extend from the single collector case. In the case where simultaneous transmissions to different collectors interfere with each other, we characterize the stability region of the system and show that a frame-based version of the well-known Max-Weight policy stabilizes the system asymptotically in the frame length.National Science Foundation (U.S.) (Grant CNS-0915988)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-08-1-0238

    Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates

    Full text link
    The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping from a pseudogap state in the underdoped cuprates to a superconducting state at optimal and overdoping, has been interpreted as evidence that the pseudogap must be due to precursor pairing. We suggest an alternative explanation, that the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the pseudogap could actually be due to any of a number of nesting instabilities, including charge or spin density waves or more exotic phases. We present a detailed analysis of this competition for one particular model: the pinned Balseiro-Falicov model of competing charge density wave and (s-wave) superconductivity. We show that most of the anomalous features of both tunneling and photoemission follow naturally from the model, including the smooth crossover, the general shape of the pseudogap phase diagram, the shrinking Fermi surface of the pseudogap phase, and the asymmetry of the tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1 and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be described in detail by this model, but we suggest a simple generalization to account for inhomogeneity, which does provide an adequate description. We show that it should be possible, with a combination of photoemission and tunneling, to demonstrate the extent of pinning of the Fermi level to the Van Hove singularity. A preliminary analysis of the data suggests pinning in the underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
    • 

    corecore