60,136 research outputs found

    Observations of Dissipation of Slow Magneto-acoustic Waves in a Polar Coronal Hole

    Full text link
    We focus on a polar coronal hole region to find any evidence of dissipation of propagating slow magneto-acoustic waves. We obtained time-distance and frequency-distance maps along the plume structure in a polar coronal hole. We also obtained Fourier power maps of the polar coronal hole in different frequency ranges in 171~\AA\ and 193~\AA\ passbands. We performed intensity distribution statistics in time domain at several locations in the polar coronal hole. We find the presence of propagating slow magneto-acoustic waves having temperature dependent propagation speeds. The wavelet analysis and Fourier power maps of the polar coronal hole show that low-frequency waves are travelling longer distances (longer detection length) as compared to high-frequency waves. We found two distinct dissipation length scales of wave amplitude decay at two different height ranges (between 0--10 Mm and 10--70 Mm) along the observed plume structure. The dissipation lengths obtained at higher height range show some frequency dependence. Individual Fourier power spectrum at several locations show a power-law distribution with frequency whereas probability density function (PDF) of intensity fluctuations in time show nearly Gaussian distributions. Propagating slow magneto-acoustic waves are getting heavily damped (small dissipation lengths) within the first 10~Mm distance. Beyond that waves are getting damped slowly with height. Frequency dependent dissipation lengths of wave propagation at higher heights may indicate the possibility of wave dissipation due to thermal conduction, however, the contribution from other dissipative parameters cannot be ruled out. Power-law distributed power spectra were also found at lower heights in the solar corona, which may provide viable information on the generation of longer period waves in the solar atmosphere.Comment: corrected typos and grammar, In press A&

    Suppression of dynamics and frequency synchronization in coupled slow and fast dynamical systems

    Full text link
    We present our study on the emergent states of two interacting nonlinear systems with differing dynamical time scales. We find that the inability of the interacting systems to fall in step leads to difference in phase as well as change in amplitude. If the mismatch is small, the systems settle to a frequency synchronized state with constant phase difference. But as mismatch in time scale increases, the systems have to compromise to a state of no oscillations. We illustrate this for standard nonlinear systems and identify the regions of quenched dynamics in the parameter plane. The transition curves to this state are studied analytically and confirmed by direct numerical simulations. As an important special case, we revisit the well-known model of coupled ocean atmosphere system used in climate studies for the interactive dynamics of a fast oscillating atmosphere and slowly changing ocean. Our study in this context indicates occurrence of multi stable periodic states and steady states of convection coexisting in the system, with a complex basin structure.Comment: 9 pages, 20 figures, submitted to European Physical Journal
    • …
    corecore