76 research outputs found
On compression of Bruhat-Tits buildings
We obtain an analog of the compression of angles theorem in symmetric spaces
for Bruhat--Tits buildings of the type .
More precisely, consider a -adic linear space and the set of
all lattices in . The complex distance in is a complete system of
invariants of a pair of points of under the action of the complete
linear group. An element of a Nazarov semigroup is a lattice in the duplicated
linear space . We investigate behavior of the complex distance under
the action of the Nazarov semigroup on the set .Comment: 6 page
PRACTICAL IMPLEMENTATION OF PHOTOGRAMMETRY FOR THE MODELLING OF A CYLINDRICAL HISTORICAL BUILDING
This work deals with the image capture for close-range photogrammetry in the context of the modelling of a round tower with repetitive texture (made of bricks), both inside and outside. For that purpose we test different acquisition strategies that differ in terms of camera path (straight or circular) and number of images acquired at each camera position, that is with or without oblique images. Besides, the formula to compute the curvilinear base according to a given overlap rate between successive frontal photos are written for each strategy. The comparisons rely on the observation of the aspect of the different dense point clouds (noise, holes), the deformation seen in the orthomosaics and values extracted from the photogrammetric projects such as metric accuracies with GCP. Our results confirm some art rules
Enhancing global climate policy ambition towards a 1.5 °C stabilization: a short-term multi-model assessment
The Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios
Annex III: Scenarios and modelling methods
The use of scenarios and modelling methods are pillars in IPCC Working Group III (WGIII) Assessment Reports. Past WGIII assessment report cycles identified knowledge gaps about the integration of modelling across scales and disciplines, mainly between global integrated assessment modelling methods and bottom-up modelling insights of mitigation responses. The need to improve the transparency of model assumptions and enhance the communication of scenario results was also recognised. This annex on Scenarios and Modelling Methods aims to address some of these gaps by detailing the modelling frameworks applied in the WGIII Sixth Assessment Report (AR6) chapters and disclose scenario assumptions and its key parameters. It has been explicitly included in the Scoping Meeting Report of the WGIII contribution to the AR6 and approved by the IPCC Panel at the 46th Session of the Panel
Global sensitivity analysis of an energy-economy model of the residential building sector
International audienceIn this paper, we discuss the results of a sensitivity analysis of Res-IRF, an energy-economy model of the demand for space heating in French dwellings. Res-IRF has been developed for the purpose of increasing behavioral detail in the modeling of energy demand. The different drivers of energy demand, namely the extensive margin of energy efficiency investment, the intensive one and building occupants, behavior are disaggregated and determined endogenously. The model also represents the established barriers to the diffusion of energy efficiency: heterogeneity of consumer preferences, landlord-tenant split incentives and slow diffusion of information. The relevance of these modeling assumptions is assessed through the Morris method of sensitivity analysis, which allows for the exploration of uncertainty over the whole input space. We find that the Res-IRF model is most sensitive to energy prices. It is also found to be quite sensitive to the factors parameterizing the different drivers of energy demand. In contrast, inputs mimicking barriers to energy efficiency have been found to have little influence. These conclusions build confidence in the accuracy of the model and highlight occupants' behavior as a priority area for future empirical research. © 2015 Elsevier Ltd
Consequences physiologiques et morphologiques de l'expression du gene rolA dans les plantes de tabac
National audienc
- …