9,861 research outputs found

    Generalized q-deformed Correlation Functions as Spectral Functions of Hyperbolic Geometry

    Get PDF
    We analyse the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite dimensional Lie algebras, MacMahon and Ruelle functions. A p-dimensional MacMahon function is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c=1 CFT. In this paper we show that p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three dimensional hyperbolic geometry.Comment: 12 pages, no figure

    Graphene-based spin-pumping transistor

    Full text link
    We demonstrate with a fully quantum-mechanical approach that graphene can function as gate-controllable transistors for pumped spin currents, i.e., a stream of angular momentum induced by the precession of adjacent magnetizations, which exists in the absence of net charge currents. Furthermore, we propose as a proof of concept how these spin currents can be modulated by an electrostatic gate. Because our proposal involves nano-sized systems that function with very high speeds and in the absence of any applied bias, it is potentially useful for the development of transistors capable of combining large processing speeds, enhanced integration and extremely low power consumption

    Graphene as a non-magnetic spin-current lens

    Full text link
    In spintronics, the ability to transport magnetic information often depends on the existence of a spin current traveling between two different magnetic objects acting as source and probe. A large fraction of this information never reaches the probe and is lost because the spin current tends to travel omni-directionally. We propose that a curved boundary between a gated and a non-gated region within graphene acts as an ideal lens for spin currents despite being entirely of non-magnetic nature. We show as a proof of concept that such lenses can be utilized to redirect the spin current that travels away from a source onto a focus region where a magnetic probe is located, saving a considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure

    Contributions from Dilatonic Strings to the Flat Behaviour of the Rotational Curves in Galaxies

    Full text link
    We analyse the flat behaviour of the rotational curves in some galaxies in the framework of a dilatonic, current-carrying string. We determine the expression of the tangential velocity of test objects following a stable circular equatorial orbit in this spacetime.Comment: This version to be published in the Int. Journal of Modern Phys.

    Euclidean thermal spinor Green's function in the spacetime of a straight cosmic string

    Full text link
    Within the framework of the quantum field theory at finite temperature on a conical space, we determine the Euclidean thermal spinor Green's function for a massless spinor field. We then calculate the thermal average of the energy-momentum tensor of a thermal bath of massless fermions. In the high-temperature limit, we find that the straight cosmic string does not perturb the thermal bathComment: 11 pages, latex, no figure

    Transparent Replication Using Metaprogramming in Cyan

    Full text link
    Replication can be used to increase the availability of a service by creating many operational copies of its data called replicas. Active replication is a form of replication that has strong consistency semantics, easier to reason about and program. However, creating replicated services using active replication still demands from the programmer the knowledge of subtleties of the replication mechanism. In this paper we show how to use the metaprogramming infrastructure of the Cyan language to shield the application programmer from these details, allowing easier creation of fault-tolerant replicated applications through simple annotations.Comment: 8 page

    Dynamic RKKY interaction between magnetic moments in graphene nanoribbons

    Get PDF
    Graphene has been identified as a promising material with numerous applications, particularly in spintronics. In this paper we investigate the peculiar features of spin excitations of magnetic units deposited on graphene nanoribbons and how they can couple through a dynamical interaction mediated by spin currents. We examine in detail the spin lifetimes and identify a pattern caused by vanishing density of states sites in pristine ribbons with armchair borders. Impurities located on these sites become practically invisible to the interaction, but can be made accessible by a gate voltage or doping. We also demonstrate that the coupling between impurities can be turned on or off using this characteristic, which may be used to control the transfer of information in transistor-like devices.Comment: 10 pages, 10 figure

    Cosmic String Wakes in Scalar-Tensor Gravities

    Full text link
    The formation and evolution of cosmic string wakes in the framework of a scalar-tensor gravity are investigated in this work. We consider a simple model in which cold dark matter flows past an ordinary string and we treat this motion in the Zel'dovich approximation. We make a comaprison between our results and previous results obtained in the context of General Relativity. We propose a mechanism in which the contribution of the scalar field to the evolution of the wakes may lead to a cosmological observation.Comment: Replaced version to be published in the Classical and Quantum Gravit
    • …
    corecore