9,861 research outputs found
Generalized q-deformed Correlation Functions as Spectral Functions of Hyperbolic Geometry
We analyse the role of vertex operator algebra and 2d amplitudes from the
point of view of the representation theory of infinite dimensional Lie
algebras, MacMahon and Ruelle functions. A p-dimensional MacMahon function is
the generating function of p-dimensional partitions of integers. These
functions can be represented as amplitudes of a two-dimensional c=1 CFT. In
this paper we show that p-dimensional MacMahon functions can be rewritten in
terms of Ruelle spectral functions, whose spectrum is encoded in the
Patterson-Selberg function of three dimensional hyperbolic geometry.Comment: 12 pages, no figure
Graphene-based spin-pumping transistor
We demonstrate with a fully quantum-mechanical approach that graphene can
function as gate-controllable transistors for pumped spin currents, i.e., a
stream of angular momentum induced by the precession of adjacent
magnetizations, which exists in the absence of net charge currents.
Furthermore, we propose as a proof of concept how these spin currents can be
modulated by an electrostatic gate. Because our proposal involves nano-sized
systems that function with very high speeds and in the absence of any applied
bias, it is potentially useful for the development of transistors capable of
combining large processing speeds, enhanced integration and extremely low power
consumption
Graphene as a non-magnetic spin-current lens
In spintronics, the ability to transport magnetic information often depends
on the existence of a spin current traveling between two different magnetic
objects acting as source and probe. A large fraction of this information never
reaches the probe and is lost because the spin current tends to travel
omni-directionally. We propose that a curved boundary between a gated and a
non-gated region within graphene acts as an ideal lens for spin currents
despite being entirely of non-magnetic nature. We show as a proof of concept
that such lenses can be utilized to redirect the spin current that travels away
from a source onto a focus region where a magnetic probe is located, saving a
considerable fraction of the magnetic information that would be otherwise lost.Comment: 9 pages, 3 figure
Contributions from Dilatonic Strings to the Flat Behaviour of the Rotational Curves in Galaxies
We analyse the flat behaviour of the rotational curves in some galaxies in
the framework of a dilatonic, current-carrying string. We determine the
expression of the tangential velocity of test objects following a stable
circular equatorial orbit in this spacetime.Comment: This version to be published in the Int. Journal of Modern Phys.
Euclidean thermal spinor Green's function in the spacetime of a straight cosmic string
Within the framework of the quantum field theory at finite temperature on a
conical space, we determine the Euclidean thermal spinor Green's function for a
massless spinor field. We then calculate the thermal average of the
energy-momentum tensor of a thermal bath of massless fermions. In the
high-temperature limit, we find that the straight cosmic string does not
perturb the thermal bathComment: 11 pages, latex, no figure
Transparent Replication Using Metaprogramming in Cyan
Replication can be used to increase the availability of a service by creating
many operational copies of its data called replicas. Active replication is a
form of replication that has strong consistency semantics, easier to reason
about and program. However, creating replicated services using active
replication still demands from the programmer the knowledge of subtleties of
the replication mechanism. In this paper we show how to use the metaprogramming
infrastructure of the Cyan language to shield the application programmer from
these details, allowing easier creation of fault-tolerant replicated
applications through simple annotations.Comment: 8 page
Dynamic RKKY interaction between magnetic moments in graphene nanoribbons
Graphene has been identified as a promising material with numerous
applications, particularly in spintronics. In this paper we investigate the
peculiar features of spin excitations of magnetic units deposited on graphene
nanoribbons and how they can couple through a dynamical interaction mediated by
spin currents. We examine in detail the spin lifetimes and identify a pattern
caused by vanishing density of states sites in pristine ribbons with armchair
borders. Impurities located on these sites become practically invisible to the
interaction, but can be made accessible by a gate voltage or doping. We also
demonstrate that the coupling between impurities can be turned on or off using
this characteristic, which may be used to control the transfer of information
in transistor-like devices.Comment: 10 pages, 10 figure
Cosmic String Wakes in Scalar-Tensor Gravities
The formation and evolution of cosmic string wakes in the framework of a
scalar-tensor gravity are investigated in this work. We consider a simple model
in which cold dark matter flows past an ordinary string and we treat this
motion in the Zel'dovich approximation. We make a comaprison between our
results and previous results obtained in the context of General Relativity. We
propose a mechanism in which the contribution of the scalar field to the
evolution of the wakes may lead to a cosmological observation.Comment: Replaced version to be published in the Classical and Quantum Gravit
- …